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Abstract. Literate programming systems are a class of
domain specific languages designed to encourage writing
programs specifically to be read as essays or books by
humans instead of by machines. Systems like CWEB, WEB,
and ChezWEB allow the user to associate arbitrary code
bodies with a concise but natural language description.
That description may then be referred to in other sec-
tions of the program source, and the code body associ-
ated with the description is substituted for the reference
in the program source. Using Scheme macros, we de-
scribe how this substitution is performed unhygienically.
We then describe and implement an innovation unique
to ChezWEB that extends the notion of code reordering
to provide hygiene and referential transparency guaran-
tees for section references and code substitutions in the
system. Our implementation strategy serves as a design
pattern for implementing other language forms for which
the programmer desires similar hygienic guarantees.

1. Introduction. Literate programming [5] is a dis-
ciplined approach to program design and documenta-
tion. The literate programmer composes programs with
the intention that they will be read by humans in ways
not dissimilar to the ways one may read a book. Such a
programmer interleaves code and prose within a single
document to be executed by the computer or read by
another programmer. Literate programming shifts the
focus from creating programs that run on computers to-
wards programs written to carefully exposit code for the
sake of a human audience. Integral to this exposition,
literate programming tools allow a programmer to re-
arrange pieces of code in ways that a computer would
reject, but that, presumably, make the code clearer or
more easily explained to a human.
Literate programming systems usually take the form

of simple domain specific languages that admit two in-
terpretations, one as code that a computer can com-
pile or interpret, and another as a source for typesetting
an essay-like document for human reading. These lan-
guages map nicely to the notion of preprocessor macros

common throughout general purpose programming lan-
guages. Like most meta-languages for programming in
general, however, all literate programming systems of
which the author is aware do textual level copying when
reordering code. This is equivalent to unhygienic macro
expansion and suffers the same limitations and prob-
lems.

The Scheme language, with its powerful macro facility,
presents an excellent opportunity to address the prob-
lems of unhygienic code reordering in literate program-
ming. We have developed and used a literate program-
ming system called ChezWEB which introduces a notion
of hygiene for literate programs. In its second major
version, we have learned a number of things about im-
plementing such hygiene conditions using the Scheme
macro language, which are presented here. We discuss
the desirability and usability of a hygienic literate pro-
gramming system. We also describe in detail the imple-
mentation of hygiene for ChezWEB. This implementation
has gone through a number of revisions and improve-
ments, and we believe this process is especially elucidat-
ing to programmers who may wish to implement similar
guarantees for other user-defined extensions to Scheme.

We begin by delving into background information on
literate programming and Scheme macro programming.
We then discuss the motivations for ChezWEB; we dis-
cuss its notion of hygiene in detail. An exposition of the
ChezWEB runtime system follows, which implements the
hygiene semantics of the system. We identify limitations
of our current approach and lay out future work. We also
discuss related work on literate programming through-
out the Scheme community and other communities, and
briefly comment on their relation to ChezWEB.

This paper is itself a ChezWEB program and the reader
is encouraged to obtain a copy of the ChezWEB system1

and investigate all of the examples, implementations,
and illustrations in the paper. Organizational aids such
as an index, a list of code sections, and a table of major

1 http://www.cs.indiana.edu/~awhsu/
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sections are included at the back of the paper. Cross
references are littered throughout the code and body
of the paper, and point to other sections in the paper
that contain useful or important information. A copy
of the web for this paper is available online at the au-
thor’s home page.

2. Background and Terminology. This and the
following few sections describe the basic terminology
that will be used throughout this paper, as well as any
background information that will be helpful to under-
standing the work in later sections. The reader already
familiar with concepts related to hygiene, syntax-case,
literate programming and WEB systems, and with Chez
Scheme’s module and with-implicit forms can safely
skip to the ChezWEB design.

3. Literate Programming. Donald Knuth first
conceived of literate programming, creating the WEB lit-
erate programming system for Pascal [5]. The basic liter-
ate programming tenets emphasize the close association
between documentation, code, and the style of docu-
mentation. Literate programming is the construction of
a program much as the construction of an essay or paper,
where code and prose work to exemplify some particu-
lar topic or behavior. The code is designed to be read
as a rendered paper (maybe as a web page). Literate
programming systems usually connect a documentation
language, often TEX [4] or XML, together with some pro-
gramming language. Some systems are mostly agnostic
towards one or both of these languages [8].
Literate programming systems enable a programmer

to deconstruct a program into chunks that can be re-
ordered. The code itself is “tangled” into a form suitable
for program execution, or “woven” into a document that
may be rendered for human consumption. Some literate
programming systems (sometimes called semi-literate)
do not have explicit code reordering primitives in their
meta-language [8].

WEB

SCM

TEX PDF
tangle

weave

Most literate programming systems are implemented as
preprocessors, a separate layer above the code or doc-
umentation language, and, in some sense, implement a

specialized macro system on top of the programming lan-
guage. In most of these systems, the literate program-
ming meta-language is unhygienic and code reordering is
done at the textual/string level like the C preprocessor.

Literate programming systems usually allow one to
give a name to a string of code, and then to use that
name in other strings of code, where the system will
then find references to this named chunk in the pieces of
code and replace them with the literal string associated
with the name. This is usually done simply by replacing
the reference to the name with the string in a prepro-
cessor step before the compiler runs. This makes the
copying and pasting of code from place to place entirely
unhygienic and not at all referentially transparent.

4. WEB-style Literate Programming. In the
style of literate programming espoused and encouraged
by the WEB family of systems, of which ChezWEB is a
member, the programmer makes minimal annotations to
the code, through the use of control codes delimited by
the @ character. A web is a text file containing a series of
sections, where each section consists of a text part and
a code part, possibly with other elements, depending on
the system. In this paper, we refer to the code parts
sometimes as chunks.

When a web is woven together, a TEX file is produced
that typesets the documentation and the code. In these
systems, pretty printing plays an important role in the
presentation of the code, and they contain pretty print-
ers that work hard to present the code in an estheti-
cally pleasing manner. Additionally, cross-referencing
of various sections, where the code in one section may
be referenced or extended in another section are man-
aged automatically. Indexing of identifiers and a listing
of all the section names are also part of the metadata
that the system tracks. This is in contrast to other sys-
tems, like noweb [8], which provide the code reorder-
ing functionality of a full literate programming system,
but which do not provide any default support for lan-
guage specific metadata or cross-referencing. Systems
like noweb usually have some way of incorporating this
sort of indexing and pretty printing should the user de-
sire this functionality.

In a WEB program, there are named sections, which
associate code parts with a specific, usually short but
descriptive natural language name. This name may then
be referenced in other sections with the appropriate an-
notation. As an example, in this section we define a sec-
tion that can be used in place of a message string. The
source code for this section definition looks like this:

@<Load message@>=

"Hello, you’ve loaded the system."
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This is then typeset as follows when the document is
woven together.

⟨The load message 4 ⟩ ≡
"Hello, you’ve loaded the system."

This code is used in section 5.

5. Notice that the system provides cross references
and indicates the section number where the code part
is defined. In ChezWEB we have not yet implemented a
pretty printer, so the code in woven ChezWEB documents
is printed in a typewriter font.
We can use the above message by referencing it in

the body of another section. Named sections as in the
above are not evaluated by default, but are saved for use
in later sections. Top-level program constructs are in-
dicated by using the @p control code. These are output
directly to the top-level of the file when the web is tan-
gled together. If we then load this file, these expressions
will be evaluated. If we reference a named section some-
where in a top-level code fragment, then that section
will also be evaluated and expanded. In this section, for
demonstration purposes, we will put a print message at
the top level that prints the message above. The source
code for this looks like this:

@p

(printf "~a~n" @<The load message@>)

In the woven output of the program, this will look as fol-
lows:

(printf "~a~n" ⟨ The load message 4 ⟩)

6. Semi-literate Programming. There are other
types of systems that are sometimes referred to as liter-
ate programming systems. In actuality, these are con-
sidered semi-literate systems. In these systems, which
include Literate Haskell [7] and SchemeWEB [9], there
is no special support for the arbitrary reordering of frag-
ments of code. Instead, the system only supports the
intermingling of top level code and top-level documen-
tation. This documentation usually takes the form of
either marked up comments, or, as in SchemeWEB, it
may be plain text, where the system determines what
elements of the text file were meant as program source.
These systems sometimes include a pretty printer for
the code, but this is not essential to the concept of
semi-literate systems. The important distinction be-
tween semi-literate and literate programming systems
is the ability to arbitrarily reorder chunks of code as a
part of the literate system. In this paper, we deal specif-
ically with fully literate programming systems, though
we discuss the relation of our work to semi-literate sys-
tems when appropriate.

7. Scheme macros. Scheme macros are trans-
formers from source code to source code. They pro-
vide two important guarantees over most other macro
systems for general programming languages. These are
known as the hygiene condition and referential trans-
parency. Specifically, in other macro languages, we may
inadvertently capture bindings at the call site of the
macro that we do not wish to capture, or we may in-
troduce bindings that pollute the call site namespace
in bad ways.

8. The hygiene condition assures the programmer that
any binding that is introduced in the body of a macro
expansion will be visible only within the scope of that
macro. In the following example, the variable hide-me

is guaranteed to only be visible in the body of the macro.

⟨Hygiene example, define hidden 8 ⟩ ≡
(define-syntax hidden

(syntax-rules ()

[(_ id x)

(begin

(define hide-me x)

(define (id) hide-me))]))

This section exports hidden.

This code is used in section 9.

9. In the above example, we can use this macro as
many times as we want, and each id will be associated
with its own hide-me variable. Moreover, the hide-me

variable will not be visible in the surrounding context.
We can test that with the following code:

⟨Hygiene example, test hidden 9 ⟩ ≡
(let ()

⟨ Hygiene example, define hidden 8 ⟩
(hidden a 3)

(let ([x (a)])

(hidden b 4)

(list x a b)))

;=> ’(3 3 4)

10. We can think of the hygiene condition as ensuring
that bindings don’t flow out of the context of the macro
body in which they are introduced. Referential trans-
parency is a safety guarantee about the free variables
in the body of a macro. Specifically, any free reference
in the body of a macro will be scoped at the definition
site, rather than at the call site. This means that the
expansion of a macro given the same identifiers as in-
put is invariant to the context of the macro call. As an
example, suppose we define a macro that uses if.
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⟨Ref. trans. example, define reftrans 10 ⟩ ≡
(define-syntax reftrans

(syntax-rules ()

[(_ x) (if x 1 0)]))

This section exports reftrans.

This code is used in section 11.

11. Assuming that we define reftrans in a context
where if is bound to the standard Scheme if, then we
want to be assured that calling (reftrans x) will re-
turn 1 if the x value is a true value, and 0 otherwise.
Referential transparency allows us to make this claim,
even when the context could give us trouble, as in the fol-
lowing code, where we redefine if in the calling context.

⟨Ref. trans. example, test reftrans 11 ⟩ ≡
(let ()

⟨ Ref. trans. example, define reftrans 10 ⟩
(let ([if 5]) (reftrans if)))

;=> 1

12. The if that we bind will be considered a different
identifier from the one used internally to the macro, and
so even passing if as the x value for the macro will
not cause a conflict.

13. The SYNTAX-CASE Macro System. The
R6RS [12] standard extends the purely hygienic syntax-
rules system that was defined in the R5RS standard.
The system is called syntax-case for the pattern match-
ing construct of the same name provided by the system.
Importantly, hygiene is still enforced automatically by
the syntax-case system, and hygiene is the default op-
eration. [14]
The syntax-case system introduces a few extensions

to the concept of Scheme macros that greatly increase
its expressive power. A macro is now a procedure bound
to an identifier using the define-syntax form. This
procedure takes a single argument and returns a single
value. These procedures may perform arbitrary com-
putation and may use the whole Scheme language. The
syntax-case system defines a new data type called syn-
tax objects that encode the structure of an expression
together with the lexical information necessary to fully
determine the scoping of each identifier in the expres-
sion. Macro procedures, called macro transformers, are
passed syntax objects as their single argument, and must
return syntax objects.
The following code defines a reftrans macro equiva-

lent to the example above using syntax-case.

⟨Define reftrans with syntax-case 13 ⟩ ≡
(define-syntax reftrans

(lambda (x)

(syntax-case x ()

[(_ x) #’(if x 1 0)])))

This section exports reftrans.

14. The #’ form in the above is a lexical shorthand
where #’x is the same as saying (syntax x) and eval-
uates to a syntax object that represents the identifier x
scoped as if it were the body of a macro expansion that
had been defined there. That is, the x will refer to the
nearest lexical binding in scope. In the above code, for
example, the if identifier will still refer to the standard
Scheme if and x will refer to the pattern variable in
the syntax-case pattern.

In the syntax-case system, despite the name, the
syntax-case form is entirely optional. It is simply a
means of destructoring and working with the syntax
objects. The important element here is that we have
syntax objects as first-class citizens in the language.

Moreover, syntax-case defines a way of extracting
the datum value of the syntax object (such as one might
pass to eval) as well as allowing a programmer to change
the lexical information of the syntax object so that iden-
tifiers will be scoped at different locations of the pro-
gram. In this paper, the concept of changing the lexical
scope will be referred to as recoloring or rewrapping,
where one thinks of lexical regions or contexts as each
having a unique color.

In syntax-case one uses syntax->datum to extract
the datum representation of a syntax object without
any lexical information. For example, (syntax->datum
#’x) will return the symbol ’x. Given this symbol,
we may recolor the colorless symbol by using datum-

>syntax. Here (datum->syntax #’k ’x) will color x

with the same color as the #’k syntax object. The re-
turned syntax object will be an identifier that will cap-
ture the binding for x at the lexical scope of the #’k

form.
In the following example, we define a macro that re-

turns the value of x as defined at its call site. Recall
from above that in purely hygienic systems, we are not
able to do this. If we have a free reference to x in the
body of our macro, then it must refer not to the x bound
at the macro call site, but instead to the binding at the
definition site. Thus, syntax-case allows us to selec-
tively bend hygiene to insert and extract bindings from
given contexts.
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⟨Demonstrate syntax-case capture 14 ⟩ ≡
(let ()

(define-syntax sc-x

(lambda (x)

(syntax-case x ()

[(k) (datum->syntax #’k ’x)])))

(let ([x 3]) (sc-x)))

;=> 3

This section exports sc-x.

15. In the following sections, we use an extension to
standard Scheme that mirrors the procedure syntax of
define. That is, a define-syntax form of the shape
(define-syntax (m x) ...) is equivalent to the form
(define-syntax m (lambda (x) ...)). We also use a
form with-implicit to simplify the recoloring of iden-
tifiers. We give a simple definition for with-implicit

below. The with-syntax form used in the following
code is a binding form for pattern variables, where each
left hand side clause in the bindings is a pattern such
as in the left hand sides of syntax-case patterns, and
the right hand side is an arbitrary expression that must
evaluate to a syntax object.

⟨Define with-implicit 15 ⟩ ≡
(define-syntax (with-implicit x)

(syntax-case x ()

[(_ (k id ...) b1 b2 ...)

#’(with-syntax

([id (datum->syntax #’k ’id)]

...)

b1 b2 ...)]))

This section exports with-implicit.

16. Chez Scheme Module Form. We also rely
in this paper on the Chez Scheme module form. This
is a simple syntactic form that encapsulates a body of
code and selectively makes certain bindings in that body
visible to the surrounding context. The module form has
the following syntax that we use in this paper:

(module (e ...) body+ ...)

Where the e ... pattern maps to zero or more identi-
fiers and body+ ... maps to one or more expressions,
with definition expressions coming before normal value
expressions. Thus, body+ ... is like the body of a let.

⟨Example using module 16 ⟩ ≡
(let ()

(module (x) (define x 3))

x)

;=> 3

17. The Design of ChezWEB. There are two ma-
jor versions of ChezWEB. The first generation was de-
signed as a set of libraries and scripts that bootstrapped
those libraries together. This meant that all ChezWEB
programs were written as S-expressions with all of the
documentation embedded in Scheme strings. In this
case, writing TEX code was tremendously inconvenient.
Moreover, the main benefit of doing this was to enable
one to type a literate program directly into the REPL.
This was useful for some applications, but it was so
rarely used that it did not really represent a significant
feature. The use of S-expressions as the main element
lifted the documentation to a second-class citizen.

In the second generation of the program, which gen-
erated this document itself, is instead implemented with
the same workflow and style as CWEB described in the
background section. Namely, there are two programs
chezweave and cheztangle that process webs. These
two programs do the same thing that the equivalently
named programs do in CWEB and have similar command
signatures. Thus, ChezWEB programs must be prepro-
cessed into either a Scheme file or a TEX file. We still
need some runtime support in order to enforce our hy-
giene condition, but the ChezWEB runtime is embedded
directly in the output files, rather than being a sepa-
rate library, as was required by the first generation of
the software. Because we implement the most signif-
icant element of the ChezWEB system as a runtime el-
ement, we are also able to provide a library exposing
this runtime functionality to users. This gives us the
benefit of the hygienic code chunking that we get from
the normal ChezWEB directly in the REPL. This miti-
gates the disadvantage of having a separate preproces-
sor step in our experience.

18. The novel component of ChezWEB is the way in
which is handles named sections of code, such as those
that have been used in this paper thus far. The reader
will note annotations below the code parts that indicate
what bindings are exported from a chunk. This is part
of the hygienic guarantee that ChezWEB provides. The
ChezWEB system provides two guarantees, called, anal-
ogously to Scheme macro guarantees, the hygiene and
referential transparency conditions. We can state these
guarantees informally as follows:

Hygiene. No definition in the body of a code sec-
tion shall be visible to the surrounding context of a
section reference unless that binding is explicitly ex-
ported by the code section at the point of definition.

Referential Transparency. Free variables in the
body of a code section will always refer to the near-
est lexical binding at the definition site of the code
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section, unless the identifier is explicitly noted as a
capture at the definition site, in which case the bind-
ing to a captured variable will refer to the nearest
lexical binding at the reference site of the code sec-
tion.

These mirror the guarantees provides by the syntax-

case system. Put more concisely, no binding enters or
leaves the code section at the reference site without ex-
plicit direction from the programmer. Our system notes
these explicit exports and captures as annotations at the
bottom of each named code section in the woven output.
It should be noted that in the normal case of tangling
a web file using the cheztangle program, the referen-
tial transparency guarantee is even more restricted such
that all free variables not explicitly captured will always
refer to the top-level binding for that identifier in the
program. This is due to the way that we lay out tangled
code. However, even when the runtime system enforc-
ing these is used in non-global contexts, such as when it
may be used internally in the REPL, then the general
referential transparency guarantee will hold.

19. The above is all well and good, but one may rea-
sonable question the value of introducing a notion of
hygiene into literate programming, which, at some level,
is about reordering programs. Indeed, a literate pro-
gramming system that did not allow for the export and
capture of variables would not be particularly useful.
Literate programs are in their nature unhygienic to some
extent, so why do we even bother with a set of hy-
gienic guarantees?
While it is absolutely true that we need to be able to

thread data back and forth out of a chunk, it is not true
that we always wish to do this. Similar to the problems
that macro writers face in Scheme, one may encounter
these same problems in a literate program. The fol-
lowing example demonstrates a common and desirable
methodology that we have found useful and productive
in writing our literate programs. In this example, sup-
pose that we wished to define a function to compute
factorial over a number of elements in a list. It would
be nice to separate out the process of computing facto-
rial from that of actually performing that operation on
every element of the list.

⟨Define map-fact 19 ⟩ ≡
(define (factorial n)

(if (zero? n)

1

(* n (factorial (-1+ n)))))

(define (map-fact lst)

(map factorial lst))

This section exports map-fact.

This code is used in section 21.

20. In this example, would not want the factorial

function bleeding out into the outer context of the ref-
erence site, perhaps because we are doing this for many
implementations of an algorithm, and each version uses
slightly different internal function implementations, but
the same names. In this case, we have to know ahead of
time when we write the above code whether or not we
are going to conflict with anything at the call site, and
choose names that don’t conflict. Moreover, we may be
in a context where we want to return a value, and we
are not in a definition context. It would still be nice to
be able to use internal definitions.

Both of these situations could be accommodate by us-
ing module and let appropriately, but then our code is
littered with module and let everywhere. It is much
cleaner in the presentation of code and in terms of re-
liability to have our system handle this automatically.
After all, the point of literate programming is to make
it easier to make your programs look good and easy
to read. Thus, the user should not be burdened with
watching their backs when reordering chunks of code,
just as they should not be burdened with manually deal-
ing with name conflicts in macros. Wrapping module

and let around your unhygienic code sections is the
philosophical equivalent to defmacro and gensym style
macro programming.

21. The following example demonstrates these condi-
tions. The ⟨Define map-fact⟩ chunk will export map-

fact, but we can be assured that its internal definition
of factorial will not conflict with our binding of the
same name in this code section.

⟨ Illustrate guarantees 21 ⟩ ≡
(define factorial ’nothing)

⟨ Define map-fact 19 ⟩
(map-fact (iota 6))

;=> ’(1 1 2 6 24 120)
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22. Another reasonable objection is to the use of a WEB
system at all. Indeed, if one doesn’t buy into typeset
programs, then any form of literate programming will
seem pointless. However, people have seen the value of
these types of documentation systems, as evidenced by
systems like noweb, SchemeWEB and Literate Haskell,
as well as numerous others. Why then did we choose
the admittedly more complicated model of WEB instead
of a semi-literate approach? In response, we can only say
that we want better weaving support for code reordering,
indexing, and the like. We would have ended up rolling
our own indexing, cross-referencing, and so forth for any
semi-literate system, as typeset programs are less useful
if you cannot navigate through the program quickly, so
this makes the features of WEB systems a good, direct
fit for our needs.
We do not, however, wish to neglect the semi-literate

systems. Since we make available the code-reordering
primitive as a library, users are welcome to use them in
whatever code they want, literate or not. The ChezWEB
runtime system fits very nicely with semi-literate pro-
grams if all that is desired is to enable clean and reliable
code-reordering inside of one of these systems; the tangle
and weave programs for ChezWEB can be safely ignored.

23. Implementation. We will now walk through
a progression of implementations for the hygiene guar-
antees of ChezWEB. These somewhat mirror the actual
implementations that we went through in developing
ChezWEB from the first generation through its current
version. This progression illustrates many of the impor-
tant elements of the syntax-case macro system that
may not be immediately apparent when reading about
the macro system. It also serves as a design pattern and
set of warnings for programmers attempting to do the
same sort of thing in other languages. Specifically, there
are certain pitfalls into which a macro writer may fall,
and these should be studiously avoided. Fortunately,
the syntax-case system makes these pitfalls more ap-
parent than might otherwise be possible.
Our target is a macro defsec that binds a name to a

body of code. That name can then be referenced in other
definition contexts that will expand to the body of the
code.

(defsec (name caps ...) => (exps ...)

body+ ...)

In this pattern, we want to explicitly capture the caps

... identifiers and explicitly export the exps ... iden-
tifiers. A simple example illustrates our design:

⟨ Simple defsec Example 23 ⟩ ≡
(defsec (defx y) => (x) (define x y))

(let ([y 3]) defx (list y x))

;=> ’(3 3)

This section captures defsec.

This code is used in sections 25, 35, and 40.

24. To begin with, let us first encode the semantics
of the traditional literate programming model of code
reordering. This will serve as a model for us to extend
and improve upon. To make things simpler, we will also
restrict the type of code sections we deal with to only
those which may export bindings, rather than to those
which may expand to values.

The normal model of code reordering binds the name
of a section, which we will encode as an identifier, to
a code body, such that the reference to that identifier
will expand into the code body and colored the same
as the color of the surrounding context of the call, that
is, unhygienically. We will ignore captures and exports
here. This is trivial in syntax-case.

⟨Define unhygienic defsec 24 ⟩ ≡
(define-syntax (defsec x)

(syntax-case x (=>)

[(_ (n c ...) => (e ...) b1 b2 ...)

#’(define-syntax (n x)

(datum->syntax x

’(begin b1 b2 ...)))]))

This section exports defsec.

This code is used in sections 25 and 27.

25. We can test our simple example against this im-
plementation using == which we define in the “Testing”
appendix, and it does indeed work.

⟨ Define testing primitive == 52 ⟩
(== ’(3 3) "Simple unhygienic defsec"

⟨ Define unhygienic defsec 24 ⟩
⟨ Simple defsec Example 23 ⟩)

26. It should be obvious at this point why this macro
will also exhibit the same capture problems of exist-
ing literate programming systems. If we were to re-
define define, then the above case would simply fail
to work entirely.

⟨Break unhygienic defsec 26 ⟩ ≡
(defsec (defx y) => (x) (define x y))

(let ([define 3] [y 3]) defx (list y x))

This section captures defsec.

This code is used in sections 27, 35, and 40.
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27. Here, because we are recoloring the entire body, we
see the exact same problems as we would expect from
any unhygienic macro approach. The capture problem
in literate programming is just a special case of normal
macro variable captures problems.

(== ’(3 3) "Break unhygienic defsec"

⟨ Define unhygienic defsec 24 ⟩
⟨ Break unhygienic defsec 26 ⟩)

28. We can then go to the opposite approach, by mak-
ing the entire system completely hygienic. However,
in doing so, this means that we cannot have any im-
plicit captures or exports when we call the macro. We
will have to explicitly pass all of the exports and im-
ports through the macro. This changes the signature
of defsec slightly.

(define-syntax (defsec/hyg x)

(syntax-case x (=>)

[(_ (n c ...) => (e ...) b1 b2 ...)

#’(define-syntax (n x)

(syntax-case x ()

[(_ c ... e ...)

#’(begin b1 b2 ...)]))]))

29. This will then provide us a means of doing the
exports and captures because we explicitly indicate to
the system, as the programmer, what variables go where.
This changed behavior also means that it is possible
to provide identifiers of different names to our macro,
instead of just x and y. In fact, this behaves exactly
like the define-syntax-rule form and its kin that are
found in various Scheme implementations.

(== ’(3 3 3) "Fully hygienic"

(defsec/hyg (defx y) => (x) (define x y))

(let ([define 3] [y 3])

(defx y x) (list define x y)))

30. This actually works pretty well if we assume that
we have a completely hygienic system. That is, assuming
that we never insert identifiers anywhere that they do
not occur explicitly in the source, then the above macro
works remarkably well. Unfortunately, this macro starts
to fall apart as soon as our assumptions start to change.
Indeed, with much of the code that programmers write,
we cannot assume such identifier “purity.” Take for
instance a case where one might wish to define a new
record type using the R6RS define-record-type. If
we use the long form, then things are all fine:

(== #t "Full hygiene, Long record form"

(defsec/hyg (def-x) => (make-x x?)

(define-record-type (x make-x x?)))

(def-x make-x x?)

(x? (make-x)))

31. Many programmers, however, find the long form
of define-record-type to be inconvenient and unnec-
essarily verbose. Rather, they prefer to use the short
form, where we can collapse the three bindings into just
one identifier reference. In doing so, define-record-
type then generates the appropriate identifiers based off
the one that it was given, and inserts them into the call-
ing context. In this case, our fully hygienic system will
fail. Because we only know about the identifiers visi-
ble in the body, the implicitly defined make-x and x?

identifiers, which do not occur in the body, will never
be substituted for the outer context identifiers when the
pattern substitution occurs.

(== #t "Full hygiene breaks"

(defsec/hyg (def-x) => (make-x x?)

(define-record-type x))

(def-x make-x x?)

(x? (make-x)))

32. It may be clearer to see why this happens if we
show the expanded output. Suppose we expand the
following code:

(let ()

(defsec/hyg (def-x) => (make-x x?)

(define-record-type x))

(def-x make-x x?)

(x? (make-x)))

We will get output something like this:
(letrec* ([rtd.4 ---]

[rcd.5 ---]

[make-x.6 (constructor rcd.5)]

[x?.7 (predicate rtd.4)])

(x? (make-x)))

In the above example, because the identifiers make-x and
x? that are defined by the define-record-type form
take on the colors of the x in the body of the macro,
which is only visible inside the body of the defsec/hyg
form (hygiene condition), then they will not refer to any
binding outside of that context, even though they have
the same symbolic representation; the outer context is of
a different color. In the long form, this wasn’t a problem
because we explicitly passed in the variables with the
correct coloring that we wanted already on them, and
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define-record-type just used those identifiers. With-
out that explicit threading, however, the fully hygienic
approach falls apart.

33. Above and beyond the literal problems that we see
above, there is also an issue of usability when dealing
with the fully hygienic system. It requires that we indi-
cate in two places the set of identifiers that we are cap-
turing and exporting, and it is possible that these identi-
fiers may not actually have the same textual representa-
tion. Moreover, any changes to the definition site of the
code that alters the list of captures or exports requires
changing all of these signatures everywhere else. This is
very inconvenient when dealing with these chunks. In
the first generation of ChezWEB the programmer was in
charge of partially threading through the identifiers in
a manner much like the fully hygienic approach. This
caused a number of problems on more than one occa-
sion with identifier mismatches and changes to captures
lists, and so forth. It is much more convenient to be
able to specify captures and exports at the definition
site and not to worry about explicitly mentioning them
at the call site.
Let’s improve on the fully hygienic version by elimi-

nating the need for the explicit identifier passing. The
most common idea and technique when dealing with this
is to make use of the with-implicit paradigm to recolor
the set of identifiers you capture or export based on the
outer context. Doing this, we should be able to remove
the need to explicitly thread the identifiers through.

⟨Define with-implicit based defsec 33 ⟩ ≡
(define-syntax (defsec x)

(syntax-case x ()

[(_ (n c ...) => (e ...) b1 b2 ...)

#’(define-syntax (n x)

(syntax-case x ()

[n (identifier? #’n)

(with-implicit (n c ... e ...)

#’(begin b1 b2 ...))]))]))

This section exports defsec.

This code is used in sections 35 and 37.

34. The above allows us to reformulate our tests before
into the standard signature that we used for defsec.

⟨Test defsec with long record 34 ⟩ ≡
(defsec (def-x) => (make-x x?)

(define-record-type (x make-x x?)))

def-x (x? (make-x))

This section captures defsec.

This code is used in sections 35 and 40.

35. This successfully addresses most of the problems
that we had with the previous examples. Now all of the
identifiers are colored correctly, and we don’t have to
explicitly list all of the captures and exports each time
that we use the code section.

(== ’((3 3) (3 3) #t) "Using with-implicit"

⟨ Define with-implicit based defsec 33 ⟩
(list

⟨ Simple defsec Example 23 ⟩
⟨ Break unhygienic defsec 26 ⟩
⟨ Test defsec with long record 34 ⟩))

36. Unfortunately, this is not enough to address the
issue with the short form define-record-type. We
can recast our fully hygienic example to one that uses
defsec instead of defsec/hyg.

⟨Test defsec with short record 36 ⟩ ≡
(defsec (def-x) => (make-x x?)

(define-record-type x))

def-x (x? (make-x))

This section captures defsec.

This code is used in sections 37 and 40.

37. This will still fail to give us the expected result
that we want.

(== #t "With-implicit fails on short form"

⟨ Define with-implicit based defsec 33 ⟩
⟨ Test defsec with short record 36 ⟩)

38. If we examine the expansion, we see the the ex-
act same issue as happens with the fully hygienic ver-
sion happens when using with-implicit. That is, if we
think of with-implicit as recoloring all of the identi-
fiers in its first clause that appear in syntax forms of
its body, then it becomes obvious that even though we
are recoloring make-x and x? using with-implicit, in
the short form of the expansion, there is nothing there
to recolor, so nothing gets recolored the way we want.

In the first generation of ChezWEB, our approach was
to introduce two forms @< and @<< that were wrapped
around the names of chunks at call sites. Using with-

implicit as above, we would always recolor @<< to have
the outside context, and @< would always have the in-
side context. These wrappers would then be in charge
of passing the right coloring information to the chunk,
which could rewrap its identifiers as appropriate. Un-
fortunately, while this fixes the problem to some ex-
tent for chunk exports, it doesn’t fix it for forms that
ChezWEB may not know about, such as define-record-
type. Moreover, it unnecessarily restricts where identi-
fiers can be visible; either they are visible in the outer
context or the inner context, but not both.
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In the second generation of ChezWEB, we take a differ-
ent approach. Instead of introducing two extra forms,
we change the body shape of our expansion. Specif-
ically, we make use of modules to better encapsulate
the body code. Until now, we were wrapping the body
code with a begin form. This means that we cannot
arbitrarily mix expressions and definitions inside of the
body of our chunks without knowing where and how
the chunks will be used at the call site. Instead of do-
ing this, we now wrap our code in a module form that
exports what we want.

(module (e ...) body+ ...)

The module form inherits the environment for the body+
... from the enclosing context, like let does. In the
above template, we are not recoloring any identifiers,
so everything is colored with the inner context. This
means that all the code in the body is capable of getting
access to all of the exported code that we intend to
also be visible in the outer context. This is a step
up from our approach using with-implicit which only
let us make exported identifiers visible in either of the
contexts, but not both.
To make the exported identifiers visible to the outer

context, we want to alias them together. Fortunately,
Chez Scheme has a form alias which allows us to do
just that. We can apply the same technique to bring in
bindings from the outer calling context to the inner con-
text. This leads us to the following expansion template:

(module (oe ...)

(alias ic oc) ...

(module (ie ...) body+ ...)

(alias oe ie) ...)

In this template, the i and o prefixes stand for inner
and outer contexts.
We can simulate the behavior of the alias function

in R6RS by using identifier syntaxes. This does not
fully match the semantics that alias gives us, but it
works if the Scheme system in question does not have
an equivalent alias syntax.

(define-syntax (alias/r6rs x)

(syntax-case x ()

[(_ t s)

#’(define-syntax t

(identifier-syntax

[t s]

[(set! t e) (set! s e)]))]))

39. We are now in a good position to implement a
working defsec that does not exhibit the weaknesses
described above.

(define-syntax (defsec x)

(syntax-case x (=>)

[(_ (n c ...) => (e ...) b1 b2 ...)

#’(define-syntax (n x)

(syntax-case x ()

[n (identifier? #’n)

(with-syntax

([(ic (... ...))

#’(c ...)]

[(ie (... ...))

#’(e ...)]

[(oc (... ...))

(datum->syntax x

’(c ...))]

[(oe (... ...))

(datum->syntax x

’(e ...))])

#’(module (oe (... ...))

(alias ic oc) (... ...)

(module (ie (... ...))

((... ...) b1)

((... ...) b2) ...)

(alias oe ie)

(... ...)))]))]))

40. In the above macro, we do one extra thing be-
sides the new aliasing to make the macro more reli-
able. We wrap the body in appropriate ellipses to make
sure that we can also define macros that themselves
have ellipses inside of these sections. The above macro
now successfully works in all of the previously trouble-
some conditions.

(== ’((3 3) (3 3) #t #t)

"Using modules and alias"

(list

⟨ Simple defsec Example 23 ⟩
⟨ Break unhygienic defsec 26 ⟩
⟨ Test defsec with long record 34 ⟩
⟨ Test defsec with short record 36 ⟩))

41. Limitations. As it stands, the system defined
above has two important limitations. Firstly, you cannot
alpha rename identifiers from the input to the output.
In the first generation of ChezWEB and in the above fully
hygienic example defsec/hyg, because we are passing
the captures directly through at the call site, we can
associate different names with the captures variables in
the body of the referenced section.
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⟨Example of alpha renaming 41 ⟩ ≡
(defsec/hyg (def-x) => (x) (define x 3))

(def-x y) (list y)

;=> ’(3)

42. While it may be convenient at times to have dif-
ferent names, we have found the trouble of maintain-
ing these threads throughout the program to be more
trouble than they are worth, and the convenience of not
explicitly managing them is useful more often than it
is a limitation.

43. The system is also limited by where you can actu-
ally put a chunk. In this sense, our approach to chunk
reordering is less flexible than a traditional literate pro-
gram, because a traditional approach to code reordering
allows arbitrary text to be substituted anywhere. In
our approach, only places that lead to the reference be-
ing evaluated have significant meaning. Otherwise, the
chunk references degenerate into identifiers. This means
that a reference to a code section can appear only in def-
inition or value contexts. We believe the benefits of hy-
gienic code reordering outweigh this limitation. It is also
possible to have two constructs for defining sections: one
that is hygienic, and one that does purely textual substi-
tution. This would give you the best of both approaches.

44. Discussion. Since the runtime system is writ-
ten entirely in Scheme macros, the code reordering prim-
itives can be used in their own right, without needing to
use the entire system. This allows for simple experi-
mentation and prototyping without incurring some of
the overhead of the WEB workflow, when desirable. The
fact that the Scheme macro system can so readily ac-
commodate the requirements of implementing a system
like ChezWEB demonstrates the appeal that systems like
syntax-case have when dealing with domain specific
languages. We cannot begin to imagine how we might
implement a system like this for C or C++, for example,
even should it be possible to do so without implementing
a separate expander on top of these languages.
ChezWEB differs from a few semi-literate programming

systems in that it implements the concept of named
chunks, enabling code to be re-ordered in a fashion more
suited to human consumption, as opposed to the or-
dering dictated by the compiler. Scheme itself is an
extremely flexible language, though, and much of the
complexity of traditional systems can be removed, since
Scheme itself allows such a flexibility of expression be-
yond a language like Pascal, for which WEB was the orig-
inal target. Nonetheless, ChezWEB makes it more con-
venient to move code around than would be normally

found in standard Scheme. It condenses and simplifies
things by hiding away some features of the normal macro
system, and doing some extra work for the user. We
believe that wrapping this abstraction into something
like ChezWEB makes this paradigm more accessible, more
productive, and more useful than it would be should one
simply try to achieve a similar result with comments and
without something like defsec.

Enforcing hygiene in code sections provides a level
of safety that Schemers usually get from macros, and
allows a more precise reasoning about the behavior of
the chunks that would not normally be possible. That
is, an user can now gain the benefits of Scheme’s hy-
giene and referential transparency inside of the liter-
ate programming system as well as the macro system
proper. This brings macros and documentation sys-
tems closer together, rather than making them two dis-
tinct things; a documentation system becomes just an-
other set of macros, with the same rules as any other
Scheme program.

45. As a meta note, we do not believe that it should
have been necessary to iterate over two generations to
reach the macro that we eventually defined. We did
pursue the literature on macro programming, but we
were unable to find enough guidance to help us avoid
the pitfalls that we demonstrated in this paper. Fortu-
nately, these pitfalls are quick to manifest in syntax-

case so we were able to make progress quickly, despite
these missteps. We hope that this paper and others like
it may serve to guide macro programmers who may be
searching for similar intuitive grasps of macro design,
something that we believe is somewhat lacking in the
programming literature available today, especially con-
cerning non-trivial macros.

46. We would also like to note that the implementa-
tion of these macros was greatly simplified by the mod-

ule form in Chez Scheme. The ease and appropriateness
with which it allows one to compose and create syntaxes
surrounding namespace management should be consid-
ered, and we would encourage other implementations to
provide similar functionality.

47. The syntax that we have chosen for our system
closely mirrors that of the CWEB system, but there is no
reason not to support other syntaxes on top of our basic
runtime. The Scribble system [10] is particularly attrac-
tive in this regard, and we hope to pursue this further.



12 CONCLUSION LESSONS FROM CHEZWEB §50

48. Related Work. Literate programming is not
new in the Scheme community. The SchemeWEB [9]
system is a semi-literate programming system that al-
lows one to combine LaTEX and Scheme code together.
It is semi-literate because it does not have any features
for reorganizing code. Indeed, SchemeWEB is remark-
ably simple in that it has no forms at all. Instead, top-
level Scheme forms are identified using a heuristic and
everything else is treated as documentation. This makes
it rather easy to begin using it. However this does limit
some of the ability to produce higher quality outputs
without more work on the documentation side.
The Racket Scribble system [10] provides a reader syn-

tax for writing documentation that nicely combines with
literate programming systems. Indeed, Scribble/LP is
an implementation of a traditional literate programming
system. It implements the non-hygienic semantics for
code relocation, and is Racket [3] specific, since it relies
on the reader features available in Racket. There is also
an Ikarus port of the Scribble system.
CWEB [6] is the traditional literate programming sys-

tem that inspired ChezWEB. It is targeted especially to
C/C++, and contains many special forms for extending
the abilities of the C language. It is implemented as a
preprocessor for both tangling and weaving.
SLaTEX [11] and STEX [13] are two distinct systems

that provide means of typesetting Scheme code. They
are actually more modes for Scheme typesetting, since
SLaTEX has no native means of evaluating a SLaTEX
file as a Scheme program. STEX has interesting modes
that let the typesetter use Scheme to generate output to
be typeset, but similarly focuses on typesetting, rather
than on code evaluation.

49. Future Plans. We are now in the second gener-
ation of ChezWEB and have a number of plans for where
we want to take ChezWEB. At the top of that list is pro-
viding a pretty printer, but we also wish to enable more
syntaxes, such as Scribble to be used with the system.
We would also like to expand the sorts of indexing that
we can do and deal with libraries properly. The first
generation architecture allowed us to work directly with
libraries and format them specially, but our current sys-
tem is designed in such a way that libraries must re-
main as Scheme constructs, rather than ChezWEB having
any special knowledge of them. We hope that this can
change. The interaction of chunks with libraries poses
an interesting situation, since our approach to code sec-
tion substitution requires that the code chunks be visible
in the namespace of the Scheme program.

50. Conclusion. We have discussed the implemen-
tation and motivation for ChezWEB, a hygienic literate
programming system. We discussed the design limits
and philosophy that have lead to the current generation
of the system. In particular, we examined the runtime
system for ChezWEB in detail through a series of refine-
ments on a basic macro. We have demonstrated the
interaction and synergy that can be achieved with syn-
tax based modular abstractions. Some effort has been
made to elucidate the issues of code documentation and
how meta-languages may be developed in Scheme that
compose simply with other macros, as opposed to the
use of monolithic preprocessors.

We hope that the detailed discussion of the imple-
mentation of named chunks demonstrates the practical
construction of a fairly involved, but deceptively simple
looking macro. It is hoped that while the construction
will convince the reader of the care necessary to accom-
plish such a thing, the reader will yet be convinced of
the power and accessibility of such macros given the ex-
cellent macro system provided by R6RS Scheme.
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52. Testing. We use the following == macro as a
means of verifying our results. It takes in an expression
that should evaluate to the expected value, and a string
that is a description of the test, followed by a code body.

(== expected desc-str body+ ...)

It should print out one of three messages:

desc-str: Passed.

desc-str: Failed with bad value ----.

desc-str: Failed with error...

If the test fails it should either print the error message
or it should print the bad value that it encountered.

⟨Define testing primitive == 52 ⟩ ≡
(define (c->s c)

(with-output-to-string

(lambda () (display-condition c))))

(define errstr "Failed with error~n~8,8t~a")

(define badstr "Failed with bad value ~s.")

(define-syntax (== x)

(syntax-case x ()

[(_ exp str b1 b2 ...)

#’(let ([val exp])

(printf "~a: ~a~n" str

(guard

(c [else

(format errstr (c->s c))])

(let ([act (let () b1 b2 ...)])

(if (equal? act val)

"Passed."

(format badstr

act))))))]))

(indirect-export == c->s errstr badstr)

This section exports ==.

This code is used in section 25.

53. The above code relies on format and printf from
Chez Scheme, which is just a Common Lisp compatible
implementation of those procedures.
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54. Index.

== : 52.
defsec : 23, 24, 26, 33, 34, 36.
hidden : 8.
map-fact : 19.
reftrans : 10, 13.
sc-x : 14.
with-implicit : 15.
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⟨Break unhygienic defsec 26 ⟩ Used in sections 27, 35, and 40.

⟨Define testing primitive == 52 ⟩ Used in section 25.

⟨Define unhygienic defsec 24 ⟩ Used in sections 25 and 27.

⟨Define map-fact 19 ⟩ Used in section 21.

⟨Define reftrans with syntax-case 13 ⟩
⟨Define with-implicit 15 ⟩
⟨Define with-implicit based defsec 33 ⟩ Used in sections 35 and 37.

⟨Demonstrate syntax-case capture 14 ⟩
⟨Example of alpha renaming 41 ⟩
⟨Example using module 16 ⟩
⟨Hygiene example, define hidden 8 ⟩ Used in section 9.

⟨Hygiene example, test hidden 9 ⟩
⟨ Illustrate guarantees 21 ⟩
⟨Ref. trans. example, define reftrans 10 ⟩ Used in section 11.

⟨Ref. trans. example, test reftrans 11 ⟩
⟨Simple defsec Example 23 ⟩ Used in sections 25, 35, and 40.

⟨Test defsec with long record 34 ⟩ Used in sections 35 and 40.

⟨Test defsec with short record 36 ⟩ Used in sections 37 and 40.

⟨The load message 4 ⟩ Used in section 5.
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