A VeribPed Lisp Implementation for
A VeribPed Theorem Prover

Scheme workshop 2016, Nara, Japan

Magnus O. Myreen— University of Cambridge, but now at Chalmers University of Technology
Jared Davis— Centaur Technology, Inc., but now at Apple

Result:

A VeribPed Lisp Implementation for
A VeribPed Theorem Prover

Claim:

The most comprehensive proof-based evidence
of a theorem prover's soundness to date.

This talk: The Journey

2005:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)

\/ Theme: exploring how to
59 — make verification scale.

\

?777? \ Result:

2%\ eribed Lisp Implementation for
A Veribed Theorem Prover

\

- — 777

The start:

I'm a PhD student working on verification of
machine code (factorial, length of a linked list)

Context: interactive theorem proving

Aim: to prove deep functional properties of machine code.

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime
Into primitive inferences In
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Context: interactive theorem proving

photo idea: Larry Paulsson

Machine code

Machine code,
E1510002 B0422001 C0411002 0O1AFFFFFB

IS Impossible to read, write or maintain manually.

However, for theorem-prover-based formal veripbcation:
machine code Is clean and tractable!

Reason:
' all types are concreteword32, word8, bool.

| state consists of a few simple components: a few registers,
memory and some status bits.

' each instruction performs only small well-dePned updates.

Challenges of Machine Code

machine code correctness

ARM/x86/PowerPC model
[code j (1000...10,000 lines each) 1P} code {Qj

Challenges: ! several large, detailed models
| unstructured code
I very low-level and limited resources

Infrastructure

During my PhD, | developed the following infrastructure:

func - ------- >[compiler } ————— - (code,thm)
code ----- —>[decompiler }————» (func,thm)
[machine-code Hoare triple j

...each part will be explained in the next slides.

Hoare triples

Each model can be evaluated, e.g. ARM instruction
add rO,r0,rO Is described by theorem:

|- (ARM_REAIMEM ((31 >< 2) (ARMREAIREG 15w state)) state =
OxE0800000w) ! Astate.undefined
(NEXTARMMMU cp state =
ARMNVRITEREG 15w (ARREALCREG 15w state + 4w)
(ARMWRITEREG Ow
(ARMREALCREG Ow state + ARMREALREG Ow state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARMMODEL Informal syntax for this talk:
(aR Ow x * aPC p) { ROx#PC p}
{ (p,0XEO800000wW)} p : EO800000

(aR Ow (x+x) * aPC (p+4w)) { RO (x+ x) #PC (p+4) }

Definition of Hoare triple

C‘separating conjunction)

(framfg Q/code separate)
V

ptc{gt " # sr. (prcodec) s ="
%. (q$r $codec) (runn s)
A A

(total correctness) (machine code sem.)

Program logic can be used directly for verification.
But direct reasoning In this embedded logic Is tiresome.

Decompiler

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3AO00000 mov r0O, #0O

4: E3510000 L: cmp rl, #0

8: 12800001 addne r0, rO, #1
12: 15911000 ldrne r1, [ril]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f(ro,ri,m) = let rp=0in g(ro, r, m)

g(ro,ri,m) = if . =0 then (rp, r1, m) else
let o = rp+1 in
let 1 = m(r1) in
g(ro, r1, m)

Decompilation, correct?

Decompiler automatically proves a certificate theorem:

fore(r0, r1, m) |

{ (RO,R1,M)is (rp, 1,m)" PCp" S}

p : E3A00000 E3510000 12800001 15911000 1AFFFFFB
{ (RO,R1,M)is f(rg,ri,m)" PC(p+20)" S}

which informally reads:

for any initially value (rg, r1, m) in reg 0, reg 1 and memory,
the code terminates with f(rg, ri, m) in reg 0, reg 1 and memory.

Decompilation verification example

To verify code: prove properties of function f,

! xlam. list(/l,a,m) " f(x,a, m)= (length(/),0, m)

! xam. list(/,a, m) fore (X, @, m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67/405408B36EBF7
38A000002C140000408200107EB0A02E38A500014BFFFFFO

which decompiles into f' and f*, respectively. Manual proofs
above can be reused if f = ' = f".

Decompilation how to

{ROi*RLj*PCp}
p+0 .
/ {RO (i+)) * RL | * PC (p+4) }

[ROi*PC (p+4) }
p+4 .
/ {RO (i >> 1) * PC (p+8) }

{LR Ir * PC (p+8) }
p+8 .
/ {LRIr*PCIr}

{ROI*R1j*LRIr*PCp}
P : 0810000 e1a000a0 el2fffle

How to decompile:

e0S0000 add 0, rl, r0
ela®02a0 Isr rO, r0, #1
elZffie bx Ir

1. derive Hoare triple theorems
using Cambridge ARM model

2.compose Hoare triples

3. extract function

(Loops result in recursive functions.)

{RO ((i+)>>1) *R1j* LR Ir * PC Ir } 49_> avg (i) = (i+])>>1

Decompiler cont.

Implementation:

| ML program which fully automatically performs forward proof
| no heuristics and no dangling proof obligations
| loops result in tail-recursive functions

Case studies:

| verified copying garbage collector
| bignum library routines

Part 2:

| want more automation and abstraction!

Proof-producing compilation

Synthesis often more practical. Given function
f(ri) = If ry < 10 thenry else letry = ry! 10 Inf(ry)

our compilergenerates ARM machine code:

E351000A L: cmp rl,#10
2241100A subcs rl1,rl1,#10
2AFFFFFC bcs L

and automatically proves a certibcate HOL theorem:

{R1r #PCp #s}
p : E351000A 2241100A 2AFFFFFC
{ R1f(ry) #PC (p+12) #s}

Compilation, example cont.

One can prove properties déf since it lives inside HOL.:

" x. f(X) = x mod 10

Properties proved of translate to properties of the machine code

' {R1r #PCp#¢g
p : E351000A 2241100A 2AFFFFFC
{R1(r; mod 10)#PC (p+12) #s}

Additional feature:the compiler can use the above theorem to
extend its input language withlet r{ = r{ mod 10 in_

Implementation

To compile functionf :
1. generate, without proof, code from Inpuft;
2. decompile, with proof, a functiofi’ from generated code
3. provef = f'.

Features:
' code generatiorcompletely separatérom proof

| supports many light-weightptimisationswithout any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, .

' allows for signibcantiser-debned extensions

Infrastructure again

ldea: create LISP implementations via compilation.

veribed code for LISP primitives car, cdr, cons, etc.

v
HOLA4 functions for : ARM, x86, PowerPC code
TS = compiler -~ N
LISP parse, eval, print [P } > and certibcate theorems
[decompiler]
[machine-code Hoare triple]

[ARM [X86] PowerPC]

Lisp formalised

LISP s-expressions debPned as data-type SEXp:

Num : NI SEXxp
Sym : string! SExp
Dot : SExp! SExp! SEXxp

LISP primitives were debned, e.g.

consxy = Dot xvy
car (Dotxy) = X
plus (Numm) (Num n) = Num (m+ n)

The semantics of LISP evaluation was taken to be GordonOs
formalisation of OLISP 1.50-like evalu:

Extending the compiler

We define heap assertion ‘lisp (Vv1, V2, V3, V4, Vs, Vg, 1)’ and prove
implementations for primitive operations, e.g.

Is_pair v !

{ lisp (V1,V2,V3,Va, Vs, Ve, 1) " pcp}
p : E5934000

{ lisp (va, car va, Vs, Va, Vs, V6, 1) " pc (p+4) }

size V1 + size V» + size V3 + size V4 + size Vg5 +size Vg < | !

{ lisp (V1,V2,V3,V4,Vs5, V6, 1) " pcp}
p : E50A3018 E50A4014 E50A5010 E50A600C ...

{ |iSp (COHS V1 Vo, Vo,V3, V4, Vs, Vg, |) ! pC (p —+ 332) }

with these the compiler understands:

let Vo = car vy in ...
let Vi = cons V1 Vo in ...

Reminder

| | How to decompile:
{ROi*R1j*PCp}

p+0 : e0810000
{ RO (i+]) *R1}* PC (p+4) }

lisp heap. Result: more abstraction.
cLZilie X 1

We change these triples to be about]

{ROI1*PC (p+4) }

4 : e1a000a0 . .
{p;o (i ;al) *apC (p+8)) 1. derive Hoare triple theorems

using Cambridge ARM model

{LR Ir * PC (p+8) } 2.compose Hoare triples
p+8 . el2fffle _
{LRIr*PCIr} 3. extract function

(Loops result in recursive functions.)
{ROi*R1j*LRIr*PCp}
P :e0810000 el1a000a0 el2fffle

{RO ((i+)>>1) *R1j* LR Ir * PC Ir } + avg (i) = (i+])>>1

The final case study of my PhD

ase study, hich we pelieve 1S the
' ion of & func-
g. \nter-

prst 10 produce a for
ming

tional program
preters for the coré
%86 and powerPC
and print LISP s-exP

~n top Of veriP

Running the Lisp Interpreter

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

(pascal-triangle O((1)) O6)

returns:

Part 3:

A sudden need for a serious Lisp implementation.

Two projects meet

My theorem prover Is written in Lisp.
Can | try your verified Lisp? (Umm.. sure!)
|

|
i Does your Lisp support ..., ... and ...?) (No, but it could)

|

Jared Davis Magnus Myreen
A self-verifying Verified Lisp
theorem prover Implementations
- 7, 5N
o :
\f.-__/f‘{) veribed ISP on

Milawa ARM. x86, PowerPC

Running Milawa

Milawa

!

veribetlISP on
ARM, x86, PowerPC

Milawa’s bootstrap proof:

| 4 gigabyte proof file:
>500 million unique conses

| takes 16 hours to run on a
state-of-the-art runtime (CCL)

&— hopelessly “toy”

Running Milawa

& Milawa’s bootstrap proof:

] M

v il | 4 gigabyte proof file;
Milawa >500 million unique conses
| takes 16 hours to run on a
state-of-the-art runtime (CCL)

Jitawa: veribedISP Result:

WIthJIT compiler | 4 new verified Lisp which is able
to host the Milawa thm prover

work by Jared Davis

A short introdution to
o Milawa

e Milawa Is styled after theorem provers
such as NQTHM and ACL2,

® has a small trusted logical kernel similar
to LCF-style provers,

e .. but does not suffer the performance
hit of LCF’s fully expansive approach.

work by Jared Davis

Comparison with LCF approach

custom tools OautoO tactics

SAT/SMT
FOL provers
= simpliber rewriting
decision

procedures rewriter case splitting

core derived rules

LCF-style approach the Milawa approach

e all proofs pass through the e all proofs must pass the core
core’s primitive inferences e the core proof checker can be

e extensions steer the core replaced at runtime

work by Jared Davis

Requirements on runtime

Milawa uses a subset of Common Lisp which

Is for most part first-order pure functions over
natural numbers, symbols and conses,

uses primitives: cons car cdr consp natp symbolp
equal + - < symbol-< if

Macros. or and list let let* cond
first second third fourth fifth

and a simple form of lambda-applications.

(Lisp subset defined on later slide.)

work by Jared Davis

Requirements on runtime

...but Milawa also

not
necessary

e forces function compilation
® makes dynamic function calls must support
® can produce runtime errors

runtime

(Lisp subset defined on later slide.)

Runtime must scale

Designed to scale:

® |ust-in-time compilation for speed
I functions compile to native code

e target 64-bit x86 for heap capacity
| space for 23! (2 billion) cons cells (16 GB)

e efficient scannerless parsing + abbreviations
I must cope with 4 gigabyte input
e (graceful exits In all circumstances
I allowed to run out of space, but must report it

1. specified input language: syntax & semantics

2. verified necessary algorithms, e.qg.

e compilation from source to bytecode
® parsing and printing of s-expressions
® copying garbage collection

3. proved refinements from algorithms to x86 code

4. plugged together to form read-eval-print loop

AST of Input language

term

func

primitive

Constsexp sexp
Var string

App func (term list)

If term term term

LambdaApp(string list) term (term list)
Or (term list)

And (term list)

List (term list)

Let ((string ! term) list) term

LetStar ((string ! term) list) term
Cond((term ! term) list)

First term | Secondterm | Third term
Fourth term | Fifth term

Debne| Print | Error | Funcall
PrimitiveFun primitive | Fun string

Equal| Symbolp| SymbolLess
Consp| Cons| Car| Cdr |
Natp | Add | Sub| Less

(macro)
(macro)
(macro)
(macro)
(macro)
(macro)
(macro)

Val num
Sym string
Dot sexp sex|

compile: AST — bytecode list

bytecode

Pop

PopN num
PushValnum
PushSymstring
LookupConstnum
Load num

Store num
DataOp primitive
Jump num
JumplfNil num
DynamicJump
Call num
DynamicCall
Return

Fall

Print

Compile

pop one stack element

pop n stack elements

push a constant number

push a constant symbol

push the nth constant from system state
push the nth stack element
overwrite the nth stack element
add, subtract, car, cons, ...

jump to program point n
conditionally jJump to n

jump to location given by stack top
static function call (faster)
dynamic function call (slower)
return to calling function

signal a runtime error

print an object to stdout

compile a function debnition

How do we get just-in-time compilation?

Treating code as data:

Ipcqg. {p} c{g = {p" codec} #{qg" codec}

Definition of Hoare triple:

{pc{g = !sr. (p"r"codec)s =#
$n. (g" r " codec) (runn s)

/O and efficient parsing

Jitawa Implements a read-eval-print loop:

Use of external C routines adds assumptions to proof:
® reading next string from stdin

e printing null-terminated string to stdout

Read-eval-print loop

® Result of reading lazily, writing eagerly
e Eval = compile then jump-to-compiled-code

® Specification: read-eval-print until end of input

Ais_empty (getinput io) !

next.sexp(getinput io)) = (s, rest) !

(sexp2terms, [], k, setinput rest io) %" (ans, k',io’)!
is.empty (get.input io) (k', appendto_output (sexp2stringans) io') #Cio"

(k, IO) !exec 10 (k, i0) §¥ec io"

Correctness theorem

- N N
There must be enough This machine-code Hoare

memory and I/O triple holds only for

assumptions must hold.)ne terminating executions.

- J
\4 \4

{Init_stateio ! pcp!" terminatesfor i0#}
p . codefor_ entlre_jltawa_lmplementatlon< list of numbers)
{ errormessageb %o’. "([],i0) &< io'#! bnalstate o’}

-

4 _/\) 4 _ 4 R
Each execution Is If there IS no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Verified co

$ cat verified_code.s

[* Machine code automatically extracted from a HOL4 theorem. */
[* The code consists of 7423 instructions (31840 bytes). */

Jbyte 0x48, 0x8B, Ox5F, 0x18

byte 0x4C, 0x8B, 0x7F, 0x10

.byte 0x48, 0x8B, 0x47, 0x20

byte 0x48, 0x8B, 0x4F, 0x28

Jbyte 0x48, 0x8B, 0x57, 0x08

byte 0x48, 0x8B, 0x37

byte 0x4C, 0x8B, 0x47, 0x60

byte 0x4C, 0x8B, 0x4F, 0x68

Jbyte 0x4C, 0x8B, 0x57, 0x58

.byte 0x48, 0x01, OxC1

.byte 0xC7, 0x00, 0x04, Ox4E, 0x49, 0x4C
.byte 0x48, 0x83, O0xCO, 0x04

.byte 0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
Jbyte 0x48, 0x83, 0xCO, 0x04

€

Running Milawa on Jitawa

Running Milawa’s 4-gigabyte booststrap process:

CCL 16 h
SBCL 227
Jitawa 128+

O
O
O

Ur's Jitawa’s compiler performs
UrS almost no optimisations.

Urs (8x slower than CCL)

Parsing the 4 gigabyte input:

CCL 716 seconds (9x slower than Jitawa)
Jtawa 79 seconds

Part 4:

The end-to-end result

Proving Milawa sound

4)
semantics of Milawa’s logic
_ J
(. . . \
Inference rules of Milawa’s logic _
Tﬂ"\ proving soundness
> M Milawa theorem prover of the source code
P (kernel approx. 2000 lines of Milawa Lisp)
Milawa
[Lisp semantics j o o
—l taWa Lisp implementation (x86) verification of a Lisp
Verl I:)ed (approx. 7000 64-bit x86 instructions) implementati()n

LISP [

semantics of x86-64 machine j s

Assumes x86 model, C wrapper, OS, hardware

Milawa theorem prover

(kernel approx. 2000 lines of Milawa Lisp)

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp

Proving the top-level theorem

The top-level theorem:

relates the logicOs semantics
with the execution of the x86 machine code.

Steps:

A . formalise Milawa’s logic
! syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

| run the Lisp parser (in the logic) on MilawaOs kernel
! translate (with proof) deep embedding into shallow
| prove that MilawaOs (reRective) kernel is faithful to logic

C. connect the verified Lisp implementation
| compose with the correctness thm for Lisp system

Theorem: Milawa Is sound down to x86

/

There must be enough memory and
iInput is Milawa’s kernel followed by
call to main for some input.

~

J

) Input pc.

{ init_state (milawaimplementation++ "(milawa-main O input)") $pc pc}

pc : codefor_entire jitawa_implementation

{ error.message (let result = computeoutput (parseinput) in

/\ %veryline lineok result& $

t_string result ++ "SUCCESY)'}

bnalstate (ouk
f NN\

Machine code terminates either
with error message, or ...

_

/\

J

line_ok (", 1)

(1
("
("

_3II

(
- (1

N\

~
.. output lines that are all true

w.r.t. the semantics of the logic.

J

L") !
"(PRINT (n ...)") #is.numbern) ! \/
"(PRINT (THEOREN/I))) # contextok" # |, !)

Final Part:

Learning from the mistakes. Doing It better.

A better compiler compiler?

The x86 for the compile function was produced as follows:

verified compiler —— [compiler]——> verified x86
as function in logic

[decompiler]

[machine-code Hoare triple]

A bit cumbersome....

...should have compiled the verified compiler using itself!

Bootstrapping the compiler

Instead: we should bootstrap the verified compile function,
.e. evaluate the compiler on a deep embedding
of itself within the logic:

EVAL compile COMPILE ™

derives a theorem:

compile COMPILE = compiler-as-machine-code

(Sa'f“a”a Kumar L\
ni. Cambrid V]) ‘
ge agnus M .
) uni Cambxﬁgen Michael Norrish
ge) (NICTA ANU) S((:Ott Owens
Uni. Kent)

A \eriped \mp\ementat'\on of ML
1 Michael Norrish? scott owens

CakeML!
mbridge, UK

1 Magnus O- M
versity Of Ca

¢ Laboratory uni
berra Research Lab, NICTA,
uting, university of Kent,

yreen

Ramana Kumar
1 compute
2 can
3 gchool of ComP

The first
a stron
have been s'\gn'\pcant,
ert compiler for
the con ext

cakeML 1S implemen ractive read-
S ~achine CO correctness {

""" — _nlv those resu

W= F= e

as an inte

|
Tomorrow at ICFP!

Backeng for Cakem
Yong Kiam Tan Magnys O. Myreen Ramang Kumar
IHPC, A*STAR, Singapore Chalmers University of Technology, Data61, CSIRO/ UNSVV, Australig
tanyongkiam@gmail. com Sweden amana.kumar@dataGl.csiro au
myreen@chalmers.se
I
Anthony Foy Scott Oweng Michael Noprich] etc)
University of Cambridge, UK University of Kent, Uk Datar1 ~- \ Cat|0n1
anthony.fox@cl.cam.ac.uk s.a.owens@kent.ac.uk g\Ster a\ O
e
et archs,
5 targ
AbStraCt . e \ang (o) Extending or building on Comnr-.. .
We h, termed‘at etal. 2015;ev§i’k €tal on1q. .0
end f; \ Veribed rn...
Media 12 ‘n
high-Je
Semani

. ish
Michael Norri
Scott Owens
Kumar Anthony Fox
| Ramana
e ¢ . Tan
akl en Yong Kiam
Magnus Myre

Looking back...

2005:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)

NN
e

\ 2797

\ Result:

A Veribed Lisp Implementation for
A Veribed Theorem Prover

\

- — 777

2005:
I'm a PhD student working on verification of

machine code (factorial, length of a linked list)
\4 basic reasoning about real machine code
powerful automation
\4 verification of garbage collectors
\4 synthesis from (abstract) functional specs
verified Lisp interpreters

verified just-in-time compiler for Lisp

Result:

A Veribed Lisp Implementation for
A Veribed Theorem Prover

Q ueSthﬂS’7 \4 verified compiler bootstrapping (ML)

Thank you for inviting me!

Intuition for Bootstrapping

Proof-producing synthesis Verified compiler backend

HOL functions mal CakeML AST Emdal CakeML AST —>

Verified parsing Verified type infe‘re}\

ISl — TSV INS I — NG WSl — typeable yes/no

Intuition for Bootstrapping

&

ISl — TSV INS I — NG WSl — typeable yes/no

HOL functions

linput
HOL functions lmal CakeML AST Emdal CakeML AST —>

output

verified x86 implementation of parsing, type inference, and comp

