
State Exploration Choices in a Small-Step Abstract Interpreter

Steven Lyde Matthew Might
University of Utah

{lyde,might}@cs.utah.edu

Abstract
When generating the abstract transition graph while computing
k-CFA, the order in which we generate successor states is not
important. However, if we are using store widening, the order in
which we generate successor states matters because some states
will help us jump to the minimum fixed point faster than others.
The order in which states are explored is controlled by the work list.
The states can be explored in depth-first or breadth-first fashion.
However, these are not the only options available. We can also use
a priority queue to intelligently explore states which will help us
reach a fixed point faster than either of these two approaches. In
this paper, we evaluate the different options that exist for a work
list.

1. Introduction
Control-flow analysis of higher-order languages is hard, with the
simplest implementation of the original formulation of k-CFA be-
ing cubic [8] and proven to be complete for polynomial time [9].
Faster implementations exist that are less precise. Henglein’s sim-
ple closure analysis runs in almost linear time by using unifica-
tion to solve constraints [5]. The analysis of Ashley and Dybvig
achieves a better asymptotic bound by limiting the number of times
we visit an expression in the analysis [2]. However, in this paper
we will focus on the original implementation of k-CFA.

While control-flow analysis of higher-order languages is com-
plex, the machinery underneath is actually quite simple. However,
in these simple mathematics there are several nuances that can af-
fect the precision of the analysis. In the past, the primary focus
has been the allocation function, which controls the address of the
variables we are binding [4]. With this seemingly simple function,
the polyvariance, complexity, and precision of the analysis is con-
trolled. However, this is not the only source of nuance in a small-
step abstract framework.

In this paper, we will first quickly recall what a concrete small-
step semantics looks like for lambda calculus in continuation-
passing style. We will then proceed to demonstrate how this can
easily be changed into an abstract interpreter with only a few small
changes [10]. From there we will discuss how this abstract inter-
preter can be made to run quickly by using global widening in an
algorithm known as the time-stamp algorithm [8].

Once an understanding of the time-stamp algorithm is attained,
we can dive into the meat of this paper. It will be shown that it is
important how exactly we handle the work list in the algorithm. The
order in which we visit states and generate successor states matter.

The main contribution of this paper is to point out and demon-
strate the idea that the order of exploration matters when iterating
over the work list.

Our second contribution is to demonstrate that using a priority
queue for the work list can increase the speed of the analysis and
also decrease the amount of memory required for the analysis. We

demonstrate with empirical evidence the efficacy of this idea, even
though the gains might not be substantial.

2. Concrete Semantics
For this paper we will operate over a simple continuation-passing
style lambda calculus.

v ∈ Var is a set of identifiers
lam ∈ Lam ::= (λ (v1 . . . vn) call)

f,æ ∈ AExp ::= v | lam
call ∈ Call ::= (f æ1 . . .æn)

Unlike the pure lambda calculus, we allow lambda terms to
have multiple arguments. We also only allow the body of a lambda
term to be a function call and require that each sub-expression of
a function call be either a variable or lambda term. This language
form has been shown to be a suitable intermediate representation
for compilers of higher-order languages [1]. It also has the benefit
that its semantics can be described in a single transition relation.

We will now describe an abstract machine that can be used to
evaluate a program. This machine will be very similar to the CESK
machine of Felleisen [3]. Though it does not have a continuation
component, because the continuations are explicit in the expres-
sions. This is also slightly a non-standard state space because we
have environments mapping to addresses rather than values. This
is to facilitate the abstraction of the machine using the Abstracting
Abstract Machines approach [10]. It also has a time component to
facilitate allocating addresses. It is a list of all the call sites we have
visited as we have executed the program.

ς ∈ Σ = Call× Env × Store × Time

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ Clo

clo ∈ Clo = Lam× Env

a ∈ Addr = Var × Time

t ∈ Time = Call∗

We have a transition relation that allows us to go from one state
to the next (⇒) ⊆ Σ× Σ.

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ, σ, t)⇒ (call , ρ′′, σ′, t′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ, σ)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ A(æi, ρ, σ)]

t′ = tick(ς)

ai = alloc(vi, t
′)

This transition relation relies on three auxiliary functions: one to
evaluate atomic expressions, one to advance our time component,
and one to allocate addresses.

The atomic evaluator A : AExp × Env × Store ⇀ Clo eval-
uates variables by looking up their address in the environment and
then looking up the value of that address in the store. It evaluates
lambda terms by closing over the current environment to create a
closure.

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ)

To advance our time component we use tick : Σ → Time and
which helps us keep track of all the call sites we have visited as we
have executed our program. We prepend the current call expression
to the existing time, thus creating a unique time-stamp for every
state in the execution of our program.

tick(call , ρ, σ, t) = call : t

The allocation function alloc : Var × Time → Addr simply
pairs the variable with the current time-stamp to generate a unique
address.

alloc(v, t) = (v, t)

Given a program, we must be able to inject it into an initial state.
Using I : Call→ Σ we pair a program with an empty environment,
empty store, and time-stamp with no elements.

I(call) = (call , [], [], 〈〉)

Once we have our initial state, we can execute our program
by generating successor states using our transition relation (⇒
) ⊆ Σ × Σ. We can simulate the halt continuation by having a
free variable in our program. The transition relation will not have
any closure bound to the free variable and thus cannot generate a
successor state. Execution terminates when the halt continuation is
applied. The meaning of the program is whatever value gets passed
to the halt continuation.

3. Abstract Semantics
We will now explore how we can take this concrete semantics
and make it abstract. Our abstract semantics will be guaranteed to
terminate given any program. We begin by first abstracting our state
space. Looking at the original concrete state space, the source of
unboundedness is that our time-stamps can grow arbitrarily large.
However, if we limit the length of our time-stamps to length k, our
state space becomes finite. This is the crucial value of the parameter
to k-CFA. Besides this small change, the abstract state space looks
very similar to the concrete state space, with the notable exception
that the time-stamps are now finite. Because time is finite, the
number of addresses is also finite. This makes our abstract domain
finite.

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore × T̂ime

ρ̂ ∈ Ênv = Var ⇀ Addr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo
)

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr = Var × T̂ime

t̂ ∈ T̂ime = Callk

However, having a finite set of addresses means that in our
abstract interpretation some addresses will be reused. This means
that our store must be able to handle having more than one value,
so we now map to a set of closures rather than a single closure.

These sets cannot grow arbitrarily large because there are only
a finite number of closures. This is why the indirection of the
store was introduced. Having environments point to values rather
than addresses would introduce structural recursion, because values
contain environments. However, with the introduction of the store
the cycle is broken [10].

Our abstract transition relation () ⊆ Σ̂ × Σ̂ changes slightly
from the concrete one in order to handle multiple closures. And we
now join (t) values in the store. This means we take the union
of the sets of closures for the ones that previous existed at that
address and the set of closures that we are adding and store that
at the address.

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂, t̂) (call , ρ̂′′, σ̂′, t̂′), where

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(æi, ρ̂, σ̂)]

t̂′ = t̂ick(ς̂)

âi = âlloc(vi, t̂
′)

The auxiliary functions change slightly as well. The abstract
atomic evaluator Â : AExp × Ênv × Ŝtore → P

(
Ĉlo
)

now
returns a set of closures rather than just a single value.

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)}

The abstract allocation function âlloc : Var × T̂ime → Âddr
does not change except in its types from its concrete counterpart,
because it is the time that we have limited.

âlloc(v, t) = (v, t)

However, the function to advance out time-stamp t̂ick : Σ →
T̂ime has changed from the concrete version in that it just take the
last k call sites.

t̂ick(call , ρ̂, σ̂, t̂) =

first k values︷ ︸︸ ︷
call : t̂

We still need to inject our program into an initial abstract state
Î : Call → Σ̂, but it is still paired with an empty environment,
empty store, and empty time-stamp.

Î(call) = (call , [], [], ())

To perform the analysis we must then compute all the reachable
states using our abstract transition relation () ⊆ Σ̂× Σ̂, generat-
ing successor states until a fixed point is reached.{

ς̂ : Î(call) ∗ ς̂
}

4. Implementing k-CFA
The simplest way to compute k-CFA is to construct the set of all
reachable states over the transition relation, starting at the initial
state. Any graph-searching algorithm is sufficient for finding this
set. This will give us the desired result because every state in the
concrete execution has an approximation in the set of abstract states
generated by k-CFA. This means that any behavior that occurs in
the concrete execution will be captured by the abstract execution.

Shivers devised two techniques for more quickly computing
the set of reachable states: the aggressive-cutoff algorithm and the
time-stamp algorithm [8].

We will give a short description of these two algorithms shortly
and then will describe the algorithm in more detail.

4.1 The Aggressive-Cutoff Algorithm
While exploring the state space and generating the abstract tran-
sition relation, we only ever add information, we never take any
away. We can exploit this monotonicity while exploring the state
space. If a state we are about to explore is weaker than (v) a state
that we have already visited, we know that we have already cap-
tured the behavior of that state and do not need to generate its suc-
cessor states again. This is the essence of the aggressive-cutoff al-
gorithm.

4.2 The Time-Stamp Algorithm
The time-stamp algorithm is a form of the aggressive-cutoff al-
gorithm. In the time-stamp algorithm, we modify the state-space
search by joining the store of the state just pulled from the work
list with the least upper bound of all the stores seen so far.

States contain a large environment and store that to compare
requires a deep traversal. These states are sizable structures. To
combat this issue we perform the following steps.

We keep around a single-threaded store that we update after
each transition. The store grows monotonically, so this is safe to
do. We might add additional values that would not occur in the
concrete execution, but this is always sound. Whenever we update
the store with a new value, we increment a time-stamp. Then in our
states we no longer keep a reference to the store but to a time-stamp.
A time-stamp with a lesser value is weaker than a time-stamp of a
greater value. Thus we can do subsumption testing based on the
value of the time-stamp. The larger time-stamp approximates the
smaller time-stamp.

This technique implements the aggressive cutoff algorithm
while at the same time lowering the storage overhead. The orig-
inal implementation of the time-stamp algorithm [8] showed that it
did not cost too much precision.

4.3 Detailed Algorithm
Putting together the two above techniques, exploiting configuration
monotonicity for early termination and configuration-widening,
leads to an algorithm for computing Shivers’ original k-CFA.

This algorithm in Figure 1 is taken directly from Might, but
adapted slightly to fit the notation of this paper [6].

Using a side-effected global table, Ŝ, we map the latest evalua-
tion context (call , ρ̂, t̂) to the latest generation of the store that has
been explored with that context:

Ŝ : Call× Ênv × T̂ime → N

During the search, if the current state was explored with a
generation of the store that is greater than or equal to the current
generation of the global store then that branch of the search has
terminated. The monotonicity of the abstract transition relation
guarantees that the behavior has already been approximated.

Otherwise, we widen the store of the state with the global store
and generate successors, updating Ŝ to reflect that we have explored
it with the current generation of the global store.

From the successor states, we see if they have contributed any
changes to the global store. If they have, we widen the global store
and bump its generation.

4.4 The Work List
Traditionally, when executing a work list algorithm, the order in
which we explore states is not important. However, when we use
the time-stamp algorithm, since each state can possibly contribute
different values to the global store, the order does have an effect on

the number of states that are explored. It has this effect because the
quicker we can reach a fixed point of our global store, the quicker
we can stop exploring states.

The work list is generally implemented using a list, with new
states being appended to the front. This results in a depth-first
search. However, we can explore these states in any order we wish.
In the next section, we will discuss possible ordering schemes on
this list, where we examine the contents of states in order try and
guess which ones will help us reach the fixed point of the global
store the quickest.

5. Priority Queue
There are four components to a state which we can use to guess
if it will help us climb the lattice quicker: the expression, the
environment, the store, and the time stamp.

ς̂ ∈ Σ̂ = Exp× Ênv × Ŝtore × T̂ime

In addition to the properties of these components, we can also
take advantage of temporal properties that arise during the execu-
tion of the abstract analysis.

We will now explore what properties of each of these compo-
nents we could possibly use to help us order them in our work list.
The abbreviations in the parenthesis are used in the evaluation sec-
tion.

5.1 Expression
These are possible priority schemes based on the expression com-
ponent of a state.

• The type of the expression. If our language was richer and
allowed for more language forms such as if or set!, we could
prioritize a given form over another (CTP).

• The number of subexpressions. It might be the case that more
subexpressions means that more values will be bound, thus we
should prioritize larger expressions over smaller ones (CSZ).

• Where the expression appears in the program. We could explore
expressions that appear deeper in the program first (CDL) or
we could take more of a breadth-first approach and try to visit
expressions that appear higher in our program first (CBL).

• The number of times we have visited an expression. When we
come across an expression in the course of the abstract interpre-
tation we might want to prioritize states with expressions that
we have already seen or vice versa (CFQ).

• Top level function or inner function. If the lambda term we are
invoking originally was a top-level function in our program, it
might be beneficial to explore inner functions before exploring
other top-level functions.

• Prefer user lambdas over continuation lambdas. When convert-
ing to continuation-passing style, there are two types of lambda
terms: user lambdas and continuation lambdas. Returns get con-
verted into invocations of continuation lambdas (CCR).

• The size of the continuation. This might give a rough approxi-
mation of how much computation is left to do for a given state.

5.2 Environment
These are possible priority schemes based on the environment
component of a state.

• The environment size. This is another way to give a comparable
value to an expression. A larger environment might signify that
we will bind more values (ESZ).

• The flow set size of every address in the environment. How big
the flow sets are determine partially how big the flow sets are

Ŝ ← ⊥ Seen time-stamps, Call× Ênv × T̂ime → N.
Σ̂todo ←

{
Î(pr)

}
The work list.

σ̂∗ ← ⊥ The global store.
n∗ = 1 The generation of the global store.
procedure SEARCH()
if Σ̂todo = ∅

return
remove ς̂ ∈ Σ̂todo

(call , ρ̂, σ̂, t̂)← ς̂

n← Ŝ[call , ρ̂, t̂] The latest generation seen with this context.
if n ≥ n∗

return SEARCH() Done—by monotonicity of .
ς̂ ← (call , ρ̂, σ̂ t σ̂∗, t̂) Install the widened store.
Σ̂next ← {ς̂ ′ : ς̂ ς̂ ′} Explore successors.
Ŝ[call , ρ̂, t̂]← n∗ Mark the current generation of the store as seen.
σ̂next ←

⊔{
σ̂ : (call , ρ̂, σ̂, t̂) ∈ Σ̂next

}
Check each successor for changes.

if σ̂next A σ̂∗

n∗ ← n∗ + 1 Bump up the generation of the global store.
σ̂∗ ← σ̂next Widen the global store.

Σ̂todo ← Σ̂todo ∪ Σ̂next

return SEARCH()

Figure 1. State-space search algorithm using the time-stamp algorithm for computing k-CFA: SEARCH

that we will be binding to values. It stands to reason the larger
these flow sets, the more values we will bind quickly (EFS).

5.3 Store
These are possible priority schemes based on the store component
of a state.

• The flow set size of the function we are applying. This deter-
mines how many successor states we will have. If we prefer
states that will generate more states, we might be able to subse-
quently pick the best of those.

• The flow set size of the arguments. Given that we want to reach
the fixed point as quick as possible and that adding entries in the
store is what gets us there, the more values we bind the better
(SAS).

• Number of successor states. If our language supported an if
form, we could ask the question of whether we will be exploring
one branch, both branches, neither branch (SBF).

• The flow set size of the values we are binding. If our language
supported set!, we might want to consider the flow set size of
the variable we are binding or the flow set size of the value we
are binding.

• Global store generation. The generation of the store is a metric
of the size of the store. We might prefer to explore states that
already have a larger store.

5.4 Time
These are possible priority schemes based on the time component
of a state.

• The number of times we have seen a given time. We will
often see the same time stamp in the course of an abstract
interpretation. We could prefer states with calling contexts that
we have already seen or put a preference on new ones (TFQ).

• The value of the time. We could prefer longer contexts or
shorter contexts. For contexts of the same length, we could

prefer ones that appear earlier or later in the program we are
analyzing (TVL).

6. Evaluation
To evaluate our idea, we took the implementation from Might et al.
[7] which uses the time stamp algorithm. We adapted it so it would
use a priority queue for its work list,

Observing the run times from the original paper, you will note
that the benchmarks run significantly faster. Updating the code to
run on the latest version of Scala results in a 2x speedup. We
also identified a bug where successor states were being added
multiple times to the work list. Removing these duplicate entries
also resulted in a 2x speedup.

We are also running on better hardware, but given that we reran
the original implementation on the newer hardware as a point of
reference, this should not be a concern.

The abbreviations and descriptions for the priority schemes we
evaluated in our implementation can be found in the previous sec-
tion. We used the same benchmarks analyzed by the original imple-
mentation [7]. The first two benchmarks, eta and map, test common
functional idioms; sat is a back-tracking SAT-solver; regex is a reg-
ular expression matcher based on derivatives; scm2java is a Scheme
compiler that targets Java; interp is a meta-circular Scheme inter-
preter; scm2c is a Scheme compiler that targets C.

Tables 1 and 2 compares the number of states that were gener-
ated for each benchmark. In some cases we can see that we generate
only a fifth of the states as compared to the original implementa-
tion.

Tables 3 and 4 compares the runtimes of the varying strategies.
In the best case we were able to achieve a 1.5x speedup.

Although no specific strategy is best for all benchmarks, the
strategy CFQ tends to do well both in terms of reducing the number
of states and decreasing the runtime. For a control-flow analysis
that needs to use low memory and run fast, using one of the
strategies that performs better than the baseline BFS and DFS
strategies is worth considering.

eta map sat regex scm2java interp scm2c
BFS 54 230 488 3692 7888 651 38899
DFS 66 186 293 2252 2595 657 21195
CTP 53 223 284 1831 2394 653 13663
CSZ 54 192 373 2063 2933 653 14510
CDL 54 141 343 2630 4110 653 19618
CBL 54 230 234 2205 2848 648 25808
CFQ 56 166 223 1271 1718 657 7660
CCR 53 272 520 2292 3557 656 14327
ESZ 48 178 296 2248 2966 649 25845
EFS 48 178 296 2248 2966 649 25845
SAS 53 247 373 1743 3414 655 13337
SBF 61 223 382 1645 3467 653 10288

Table 1. Number of states generated for k = 0.

eta map sat regex scm2java interp scm2c
BFS 53 361 8696 12965 10001 635 157396
DFS 38 360 17216 11328 13397 635 130302
CTP 49 341 8831 6560 4080 635 94931
CSZ 53 344 6749 8467 3828 635 98366
CDL 53 260 4527 6039 4054 635 99471
CBL 44 343 7575 4369 4448 635 99333
CFQ 53 310 5819 7207 7651 635 96594
CCR 53 464 9855 8230 5444 635 98609
ESZ 51 342 6644 8932 4119 635 118390
EFS 51 342 6644 8932 4119 635 118390
SAS 49 442 8847 5661 5762 635 84808
SBF 47 456 9600 8283 6136 635 86390

Table 2. Number of states generated for k = 1.

eta map sat regex scm2java interp scm2c
BFS 73 217 293 889 1214 828 3296
DFS 75 195 233 704 790 815 2617
CTP 66 217 230 622 777 818 2338
CSZ 69 202 264 692 850 832 2376
CDL 66 167 249 781 936 831 2344
CBL 80 229 216 691 831 867 2737
CFQ 68 182 194 536 708 828 1824
CCR 67 236 295 707 880 812 2366
ESZ 65 188 232 729 831 815 2754
EFS 71 200 238 729 881 878 3149
SAS 67 238 267 633 903 822 2319
SBF 74 221 267 618 901 826 2170

Table 3. Time in milliseconds for each benchmark for k = 0.

eta map sat regex scm2java interp scm2c
BFS 65 274 1441 1587 1341 830 8878
DFS 56 273 1820 1478 1514 819 6413
CTP 61 272 1436 1122 940 825 6253
CSZ 65 271 1333 1354 921 827 6297
CDL 66 232 1139 1114 943 849 6247
CBL 65 274 1433 929 968 879 6603
CFQ 63 256 1184 1201 1227 834 5967
CCR 63 308 1533 1323 1048 821 6068
ESZ 62 269 1284 1348 931 831 7469
EFS 69 276 1355 1464 1006 895 9806
SAS 63 310 1537 1130 1127 834 5338
SBF 62 308 1528 1329 1116 822 5814

Table 4. Time in milliseconds for each benchmark for k = 1.

All benchmarks were run with a k of zero or one. Every strategy
produced the same store for its final result.

7. Conclusion
In this paper we have demonstrated that how states are processed is
important when computing k-CFA. We have described that there is
a difference between doing a depth-first vs breadth-first search. We
have also demonstrated that using a specific type of queue can play
an important role in limiting the number of states explored.

Acknowledgments
This material is partially based on research sponsored by DARPA
under agreements number AFRL FA8750-15-2-0092 and by NSF
under CAREER grant 1350344. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, New York, NY, USA, 2007.
[2] J. M. Ashley and R. K. Dybvig. A practical and flexible flow analysis

for Higher-Order languages. ACM Transactions on Programming
Languages and Systems, 20(4):845–868, 1998.

[3] M. Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Aug. 1987.

[4] T. Gilray and M. Might. A survey of polyvariance in abstract interpre-
tations. In J. McCarthy, editor, Trends in Functional Programming,
volume 8322 of Lecture Notes in Computer Science, pages 134–148.
Springer Berlin Heidelberg, 2014.

[5] F. Henglein. Simple closure analysis. Technical report, Department of
Computer Science, University of Copenhagen (DIKU), Mar. 1992.

[6] M. Might. Environment Analysis of Higher-Order Languages. PhD
thesis, Georgia Institute of Technology, June 2007.

[7] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and exploiting
the k-CFA paradox: Illuminating functional vs. Object-Oriented pro-
gram analysis. In Proceedings of the 31st Conference on Programming
Language Design and Implementation (PLDI 2006), pages 305–315,
Toronto, Canada, June 2010.

[8] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, May 1991.

[9] D. Van Horn and H. G. Mairson. Flow analysis, linearity, and PTIME.
In M. Alpuente and G. Vidal, editors, Static Analysis, volume 5079 of
Lecture Notes in Computer Science, pages 255–269. Springer Berlin
Heidelberg, 2008.

[10] D. Van Horn and M. Might. Abstracting abstract machines. In
Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’10, pages 51–62, New York, NY,
USA, 2010. ACM.

