
Northeastern University
College of Computer and Information Science

Proceedings of the 2015 Scheme and
Functional Programming Workshop

Vancouver, BC, Canada—September 4th, 2015

Edited by Ryan Culpepper, Northeastern University
and Andy Keep, Cisco Systems, Inc.

Preface

This report aggregates the papers presented at the sixteenth annual Scheme and Functional Programming Workshop,
hosted on September 4th, 2015 in Vancouver, British Columbia, Canada and co-located with the twentieth International
Conference on Functional Programming.

The Scheme and Functional Programming Workshop is held every year to provide an opportunity for researchers and
practitioners using Scheme and related functional programming languages like Racket, Clojure, and Lisp, to share
research findings and discuss the future of the Scheme programming language.

Four papers were submitted to the workshop, and each paper was reviewed by three members of the program committee.
After deliberation, all four papers were accepted to the workshop.

In addition to the four papers presented

• Olin Shivers (Northeastern University) gave an invited keynote speech on Remora, an array-oriented programming
language with higher-order functions inspired by Iverson’s APL and J programming languages,

• William D. Clinger (Northeastern University) presented an update on the R7RS standardization process,

• Ryan Culpepper (Northeastern University) presented a tutorial on macros entitled Beyond Hygienic Macros, and

• Will Byrd (University of Utah) and Michael Ballantyne (University of Utah) presented a tutorial on miniKanren
entitled Interpreting Scheme procedures as logic programs using miniKanren.

Special thanks to Olin Shivers, William D. Clinger, Ryan Culpepper, Will Byrd, and Michael Ballantyne for their
presentations and the program committee for reviewing and deliberating on the submitted papers.

Program Committee

Ryan Culpepper, Northeastern University (Program Chair)
Christopher Earl, Lawrence Livermore National Lab
Marc Feeley, Université de Montréal
Robert Bruce Findler, Northwestern University
Eric Holk, Indiana University
Andy Keep, Cisco Systems, Inc. (General Chair)
Shuying Liang, Hewlett-Packard

Jan Midtgaard, Technical University of Denmark
Jeremy Siek, Indiana University
Èric Tanter, Universidad de Chile
Neil Toronto, University of Maryland
David Van Horn, University of Maryland

Steering Committee

Will Clinger, Northeastern University
Marc Feeley, Université de Montréal
Dan Friedman, Indiana University

Olin Shivers, Northeastern University
Mitch Wand, Northeastern University

i

Contents

1 R7RS Considered Unifier of Previous Standards 1

2 State Exploration Choices in a Small-Step Abstract Interpreter 13

3 A Framework for Extending microKanren Constraints 19

4 Type Check Removal Using Lazy Interprocedural Code Versioning 28

ii

R7RS Considered Unifier of Previous Standards ∗

William D Clinger
Northeastern University

will@ccs.neu.edu

Abstract
The R7RS (small) language standard can be implemented
while preserving near-perfect backward compatibility with
the R6RS standard and substantial compatibility with the
R5RS and IEEE/ANSI standards for the Scheme program-
ming language. When this is done, as in Larceny, R6RS
Scheme becomes a proper subset of R7RS Scheme.

1. Introduction
Portability and interoperability are two different things, and
often come into conflict with each other. When program-
ming languages are specified, portability can be increased
(and interoperability diminished) by inventing some specific
semantics for all corner cases while forbidding extensions to
standard syntax and procedures. Interoperability can be in-
creased (and portability diminished) by leaving unimportant
corner cases unspecified while allowing implementations to
generalize syntax and semantics in ways that simplify inter-
operation with other standards and components.

Consider, for example, the port-positionprocedure of
R6RS Scheme [23]. Its first draft specification, based on a
Posix feature that assumes every character is represented by
a single byte, would have precluded efficient interoperation
with UTF-8, UTF-16, and Windows [20]. Subsequent drafts
weakened that specification, increasing interoperability at
the expense of allowing port positions to behave somewhat
differently on different machines and in different implemen-
tations of the standard.

The R6RS tended to resolve those conflicts in favor of
portability, however, while the R7RS tended to favor interop-
erability [17, 21, 23]. It is therefore fairly easy for an R7RS-
conforming implementation to preserve backward compat-
ibility with R6RS and SRFI libraries and to provide con-
venient access to libraries and components written in other
languages, but it is considerably more difficult for R6RS-
conforming implementations to avoid creating barriers to in-
teroperation with R7RS and SRFI libraries. That asymme-
try between the R7RS and R6RS standards often goes unre-
marked and its importance under-appreciated when incom-
patibilities between those two standards are discussed.

∗ Copyright 2015 William D Clinger

Throughout this paper, R7RS (without parenthetical dis-
ambiguation) means the R7RS (small) language standard,
which was endorsed in 2013 after its ninth draft had been
approved by 88.9% of the votes cast [17]. Six of the seven
votes cast against the draft included comments expressing
concern about incompatibilities with the previous R6RS or
R5RS standards [12, 21]. These comments accounted for 17
of the 61 comments that required a response from Working
Group 1 before the R7RS language standard was endorsed
[5]. Another 7 of the 61 comments expressed similar con-
cerns but accompanied votes cast in favor of the draft.

Although the R7RS language standard does not mandate
compatibility with previous standards, it turns out that the
R7RS can be implemented while preserving near-perfect
backward compatibility with the R6RS standard and sub-
stantial compatibility with the R5RS and IEEE/ANSI stan-
dards. When this is done, as in Larceny v0.98, R6RS Scheme
becomes a proper subset of R7RS Scheme.

A year ago, the implementor of Sagittarius explained how
he implemented the R7RS language on top of an R6RS sys-
tem, allowing R7RS/R6RS libraries and programs to inter-
operate [11].

This paper builds upon that Sagittarius experience by de-
scribing design decisions and compromises that improve in-
teroperability between R7RS/R6RS libraries and programs.
This paper also describes several open-source components
that may be of interest to other implementors of R7RS/R6RS
systems, including a portable implementation of Unicode
7.0 and other libraries along with test suites and bench-
marks used here to appraise current support for the R7RS
and R6RS standards.

2. Larceny
Larceny v0.98, released in March 2015 [1], supports the
R7RS, R6RS, R5RS, and IEEE/ANSI standards for Scheme.

Throughout this paper, “Larceny” refers to two imple-
mentations of Scheme that share source libraries, runtime
system, and compiler front end, but their different ap-
proaches to generating machine code justify classifying
them as separate implementations.

Native Larceny JIT-compiles all Scheme code to native
machine code for ARMv7 and IA32 (x86, x86-64) proces-

1 Scheme and Functional Programming Workshop 2015

sors running Linux, OS X, or Windows. For faster loading,
files can also be compiled to machine code ahead of time.

Petit Larceny is a highly portable implementation that
uses an interpreter for read/eval/print loops but can compile
files to C code. Scheme code compiled by Petit Larceny runs
about half as fast as in native Larceny.

Larceny was the second implementation of the R6RS,
and was first to implement almost all of the R6RS standard.
Larceny was not so quick to implement the R7RS; at least
ten other systems were already supporting the R7RS (in
whole or in part) when Larceny v0.98 was released.

If pgm is an R7RS or R6RS program, then

larceny --r7r6 --program pgm

will run the program. Omitting --program pgm will en-
ter an R7RS-compatible read/eval/print loop in which all
libraries described by the R7RS and R6RS standards have
been pre-imported. Larceny’s --r7rs option is equivalent
to the --r7r6 option when a program is specified, but im-
ports only the (scheme base) library when the --program
option is omitted.

Larceny’s --r6rs option provides a legacy mode whose
primary purpose is to test whether R6RS programs limit
themselves to R6RS syntax and semantics. This --r6rs

mode enforces several “absolute requirements” of the R6RS
that prohibit extensions to R6RS syntax and procedures and
forbid interactive read/eval/print loops. As explained in the
next section, these prohibitions interfere with interoperabil-
ity.

3. More Honored in the Breach
Citing RFC 2119 [10], R6RS Chapter 2 says it uses the
words “must” and “must not” when stating an “absolute
requirement” or “absolute prohibition” of the specification.

The R6RS contains many such absolute requirements.
R6RS “mustard” absolutely forbids most extensions to lex-
ical syntax, library syntax, and semantics of procedures ex-
ported by standard libraries.

The R6RS also contains absolute requirements that have
the effect of forbidding interactive read/eval/print loops. Ac-
cording to chapter 8 of the R6RS rationale, the R6RS editors
adopted those requirements because they wanted to leave in-
teractive environments “completely in the hands of the im-
plementors” rather than run the risk of restricting “Scheme
implementations in undesirable ways” [18]. Their rationale
tells us the editors themselves believed the R6RS mustard
forbidding interactive read/eval/print loops would be “more
honored in the breach than the observance” [16].

That created precedent for honoring other absolute re-
quirements in the breach. Most implementations of the
R6RS default to a deliberately non-conformant mode that of-
fers at least some forbidden features such as a read/eval/print
loop or lexical extensions favored by the implementation.
Users who wish to run their programs in a less permissive

mode must disable extensions prohibited by the R6RS by
manipulating various flags and switches.

Some members of the Scheme community still find it
hard to believe the R6RS absolutely forbids many exten-
sions often regarded as desirable. It is therefore necessary
to examine a few examples in detail.

3.1 Example: lexical syntax
R6RS Chapter 4 says

An implementation must not extend the lexical or
datum syntax in any way, with one exception: it
need not treat the syntax #!<identifier>, for any
<identifier> (see section 4.2.4) that is not r6rs, as
a syntax violation, and it may use specific #!-prefixed
identifiers as flags indicating that subsequent input
contains extensions to the standard lexical or datum
syntax.

That absolute requirement would allow R6RS programs to
read data produced by R7RS programs when the data are
preceded by a flag such as #!r7rs, but it forbids extension
of the R6RS read procedure to accept unflagged R7RS syn-
tax for symbols, strings, characters, bytevectors, and circular
data structures.

Kent Dybvig suggested the #!r6rs flag in May 2006.
When I formally proposed addition of Dybvig’s suggestion,
I anticipated a future R7RS lexical syntax in which the
#!r6rs flag would mark data and source code that still used
R6RS syntax [2]:

I propose we add #!r6rs as a new external represen-
tation that every R6RS-conforming implementation
must support. Its purpose is to flag code that is writ-
ten in the lexical syntax of R6RS, to ease the eventual
transition from R6RS to R7RS lexical syntax.

Less than six weeks later, in the R6RS editors’ status report,
the #!r6rs flag had come to mean R6RS lexical syntax must
be rigidly enforced, with all lexical extensions forbidden
unless preceded by a #! flag other than #!r6rs [7]:

• The new syntax #!r6rs is treated as a declaration that
a source library or script contains only r6rs-compatible
lexical constructs. It is otherwise treated as a comment
by the reader.

• An implementation may or may not signal an error when
it sees #!symbol, for any symbol symbol that is not
r6rs. Implementations are encouraged to use specific
#!-prefixed symbols as flags that subsequent input con-
tains extensions to the standard lexical syntax.

• All other lexical errors must be signaled, effectively rul-
ing out any implementation-dependent extensions unless
identified by a #!-prefixed symbol.

That is the semantics demanded by the R6RS standard rati-
fied in 2007.

2 Scheme and Functional Programming Workshop 2015

Consider, for example, the R7RS datum label syntax
that allows reading and writing of circular data. This lex-
ical syntax is not described by the R6RS standard, so the
standard read and get-datum procedures provided by im-
plementations of the R6RS can support the syntax only as
an implementation-dependent extension that’s absolutely
forbidden by R6RS mustard unless it is preceded by an
implementation-specific #!-prefixed flag.

• Racket does not as yet offer an R7RS mode, and its R6RS
mode does not appear to allow the R7RS datum label
syntax under any circumstances.

• Sagittarius, Larceny, and Petit Larceny allow the R7RS
datum label syntax in R7RS modes but do not allow it in
R6RS mode unless it is preceded by an implementation-
specific flag such as #!r7rs.

• Petite Chez Scheme allows R7RS datum label syntax by
default but enforces strict R6RS lexical syntax when data
or code follow an #!r6rs flag.

• Vicare allows the R7RS datum label syntax even in data
or expressions that follow an #!r6rs flag.

As explained in section 9.1, those are the leading imple-
mentations of the R6RS currently available for Linux ma-
chines. Four of them (Racket, Sagittarius, Larceny, and Petit
Larceny) enforce R6RS mustard with respect to this particu-
lar lexical extension. The other two (Petite Chez and Vicare)
honor that absolute requirement in the breach.

3.2 Example: argument checking
R6RS Section 5.4 says implementations must check restric-
tions on the number of arguments passed to procedures
specified by the standard, must check other restrictions “to
the extent that it is reasonable, possible, and necessary”
to do so, and must raise an exception with condition type
&assertion whenever it detects a violation of an argument
restriction. These and other absolute requirements forbid
extension of R6RS procedures such as map, member, and
string->utf8 to accomodate the more general semantics
of those procedures as specified by the R7RS.

3.3 Example: syntax violations
R6RS Section 5.5 says implementations must detect syntax
violations, and must respond to syntax violations by rais-
ing a &syntax exception before execution of the top-level
program is allowed to begin. These are the absolute require-
ments that forbid interactive read/eval/print loops. They also
forbid extension of the define-record-type syntax to ac-
cept R7RS, SRFI 9, or SRFI 99 syntax, and forbid extension
of the syntax-rules and case syntaxes to accept new fea-
tures added by the R7RS.

3.4 Possible responses
The examples offered above show how R6RS mustard inter-
feres with interoperability between R6RS and R7RS code.

One possible response to these absolute requirements is
to regard the R6RS as a dead end, worthy of support only in
legacy modes.

Another possible response is to take R6RS absolute re-
quirements seriously, even when they interfere with inter-
operability. Programs that import R7RS and R6RS libraries
would have to rename all syntaxes and procedures whose
R6RS and R7RS specifications differ in even the smallest
of ways, just as R6RS programs have had to rename the
map, for-each, member, assoc, and fold-right proce-
dures when importing (rnrs base), (rnrs lists), and
(srfi :1 lists).

For Larceny we chose a third way, regarding many of the
R6RS’s absolute requirements as quaint customs that would
be more honored in the breach. When interoperability be-
tween R7RS/R6RS/R5RS code would be improved by ig-
noring an R6RS requirement, Larceny ignores the require-
ment.

With many technical standards, implementations that ig-
nore any of the standard’s absolute requirements would be
severely crippled or unusable. With the R6RS, however, im-
plementations that ignore the standard’s absolute require-
ments become more usable than implementations that take
those requirements seriously.

4. Compromises and Workarounds
As explained by Larceny’s user manual [13]:

Larceny is R6RS-compatible but not R6RS-con-
forming. When Larceny is said to support a feature of
the R6RS, that means the feature is present and will
behave as specified by the R6RS so long as no excep-
tion is raised or expected. Larceny does not always
raise the specific conditions specified by the R6RS,
and does not perform all of the checking for porta-
bility problems that is mandated by the R6RS. These
deviations do not affect the execution of production
code, and do not compromise Larceny’s traditional
safety.

This distinction between R6RS-compatible and R6RS-con-
forming foreshadowed compromises that would be needed
for convenient interoperation between R7RS, R6RS, and
R5RS libraries and programs.

Most incompatibilities between the R7RS and R6RS can
be made to disappear by adopting the more general seman-
tics specified by the R7RS while ignoring absolute require-
ments of the R6RS that forbid such extensions.

The R7RS explicitly allows extensions to its lexical syn-
tax and procedures, so implementations of the R7RS are free
to extend the read procedure to accept R6RS lexical syntax
as well as R7RS syntax. Larceny’s implementation of read
is described in a separate section below.

Although R6RS define-record-typehas little in com-
mon with define-record-type as specified by the R7RS,

3 Scheme and Functional Programming Workshop 2015

SRFI 9, and SRFI 99, that syntactic incongruity made it easy
for Larceny’s define-record-type to accept code written
according to any of those standards.

The R6RS error procedure treats its first argument as a
description of the procedure reporting the error, and allows
that argument to be a string, a symbol, or #f; there must also
be a second argument, which must be a string. The R7RS and
SRFI 23 standards specify an error procedure that requires
its first argument to be a string, and treats it as an error
message. In Larceny, a single error procedure implements
both the R7RS and R6RS semantics by using the execution
mode and its arguments to guess whether it should behave as
specified by the R6RS or as specified by the R7RS and SRFI
23. The error procedure enforces R6RS semantics under
either of these circumstances:

• Larceny is running in --r6rs mode
• its first argument is not a string, and its second argument

is a string

Larceny’s default exception handler reports errors in a la-
conic format that should make sense even when the error

procedure guesses wrong.
One incompatibility between the R6RS and R7RS stan-

dards could not be resolved by generalizing a syntax or
procedure. Their specifications of bytevector-copy! are
dangerously incompatible because they disagree concern-
ing whether the first and third arguments are destination
or source of the copy. The (larceny r7r6) library that’s
imported by Larceny’s --r7r6 option renames the R6RS
procedure to r6rs:bytevector-copy!. Libraries and pro-
grams that import (rnrs bytevectors) directly get the
original spelling, of course, and must rename something
themselves if they also import (scheme base).

The R7RS specification of real? says “(real? z) is
true if and only if (zero? (imag-part z)) is true” but
gives an example saying (real? -2.5+0.0i) evaluates to
false. I believe the prose specification should have said this:

In implementations that do not provide the optional
(scheme complex) library, (real? z) is always
true. In implementations that do provide the library,
(real? z) is false if (zero? (imag-part z)) is
false, true if both (zero? (imag-part z)) and
(exact? (imag-part z)) are true, and may be true
whenever (zero? (imag-part z)) is true.

Without that repair, the R7RS prose is consistent with R5RS
but not with R6RS, while the R7RS examples are consistent
with R6RS but not with R5RS.

The R6RS semantics of real? was a carefully reasoned
improvement over the R5RS semantics, and experience with
the R6RS has shown that programmers doing numerical
work appreciate the improvement, while casual program-
mers seldom notice it. Larceny is consistent with the R7RS
examples, with the R6RS, and with the correction I sug-

gested above. A survey of other implementations, detailed
in the appendix, supports that correction.

5. Library Syntax
Larceny implemented the R6RS using Andre van Tonder’s
implementation of R6RS libraries and macros [27]. For
Larceny v0.98, we upgraded that component to process
R7RS libraries and programs as well as R6RS libraries and
programs. It now expands define-library and library

syntax into a common intermediate form, so there is no way
for client code to tell which syntax was used to define li-
braries it imports. Hence R7RS and R6RS libraries and pro-
grams are fully interoperable.

Any incompatibilities between define-library and
library must therefore be rooted in their own syntax and
semantics. Their syntaxes are obviously disjoint, so there is
no direct conflict between R7RS and R6RS library syntax.

On the other hand, the R7RS define-library syntax
allows unsigned integers to appear within library names such
as (srfi 1) and (srfi 1 lists). R6RS library syntax
does not allow those names.

Larceny enforces the R6RS prohibition of unsigned inte-
gers within the names of libraries defined by R6RS library

syntax, but ignores the R6RS absolute requirement that for-
bids importation of libraries with such names into an R6RS
library or program. This partial flouting of R6RS absolute
requirements may seem arbitrary, but it

• improves portability (by discouraging creation of R6RS
source libraries whose names would be rejected by other
implementations of the R6RS) and also

• improves interoperability (by allowing unrestricted im-
portation of R7RS and SRFI libraries that may not even
exist in other implementations of the R6RS).

SRFI 97 specifies a convention in which the numeric
part of a SRFI library name is preceded by a colon, as in
(srfi :1 lists) [9]. The R7RS standard rendered that
SRFI 97 convention obsolete outside of R6RS libraries and
programs.

Larceny now uses the R7RS convention, as in (srfi 1)

and (srfi 1 lists), to name the SRFI libraries it sup-
ports. For backward compatibility, Larceny continues to sup-
ply duplicate libraries that use the SRFI 97 naming con-
vention, as in (srfi :1) and (srfi :1 lists). For the
newer SRFI libraries (numbered above 101), Larceny sup-
ports only the R7RS naming convention. That decision can
be reconsidered if enough programmers tell us they are still
using the R6RS library syntax when writing new code.

The R7RS define-library syntax offers several ad-
vantages over the R6RS library syntax. R7RS include

and cond-expand facilities have already shown their worth,
and liberalized placement of import declarations works
well with cond-expand and read/eval/print loops.

4 Scheme and Functional Programming Workshop 2015

The R6RS library syntax supports optional versioning,
but that feature never really caught on, partly because the
R6RS did not even suggest a file naming convention that
could accomodate its hierarchical versions. R6RS Section
7.1 implies the mapping from library names to library code
is implementation-dependent, and this implication becomes
more emphatic in R6RS Non-normative Appendixes E and
G [22]. That sanctions implementations such as Larceny in
which an R6RS library’s version is ignored.

The library syntax’s most apparent advantage over
define-library is explicit phasing of procedural macros.
The R6RS community now appears to favor implicit phas-
ing, which is allowed by the R6RS, so this advantage may
not be real [8]. Larceny v0.98 requires explicit phasing, but
that is likely to change in a future release.

6. Lexical Syntax
In most modes, Larceny normally recognizes R7RS lexi-
cal syntax together with most of the lexical syntax speci-
fied by the older R6RS, R5RS, and IEEE/ANSI standards.
In --r6rs mode, which tries to enforce most absolute re-
quirements of the R6RS, Larceny normally recognizes only
R6RS lexical syntax.

The lexical syntax allowed on a textual input port can be
altered by reading a #!r7rs, #!r6rs, #!r5rs, #!larceny,
#!fold-case, or #!no-fold-case flag from the port. The
#!fold-case and #!no-fold-case flags behave as spec-
ified by the R7RS. The other flags affect a set of port-
specific flag bits that determine whether the port allows
R7RS, R6RS, and Larceny weirdness (which is Larceny-
specific jargon for extensions to R5RS/IEEE/ANSI lexical
syntax). As required by the R6RS, the #!r6rs flag enables
R6RS weirdness while disabling R7RS and Larceny weird-
ness. The #!r7rs flag enables R7RS weirdness without dis-
abling other weirdness, and also enables case-sensitivity.
The #!larceny flag enables R7RS, R6RS, and Larceny
weirdness without disabling other weirdness; it too enables
case-sensitivity. The R5RS allows extensions to its lexical
syntax, so Larceny’s #!r5rs flag is equivalent to this se-
quence of flags:

#!r7rs #!larceny #!fold-case

The lexical syntax allowed on newly opened textual ports
is determined by a set of parameters that have been given
names such as read-r7rs-weirdness? even though they
affect output ports as well as input ports.

Bytevectors are written using R7RS syntax unless the
output port disallows R7RS weirdness and allows R6RS
weirdness, in which case R6RS syntax is used. Larceny’s
read procedure accepts both R7RS and R6RS bytevec-
tor syntax unless the input port disallows both R7RS and
Larceny weirdness, in which case only R6RS bytevector
syntax is accepted.

Symbols, strings, and characters are written using R7RS
syntax unless the output port disallows R7RS weirdness, in
which case R6RS syntax is used unless the port also disal-
lows R6RS weirdness, in which case characters that would
not be portable in context under R5RS rules are written using
inline hex escapes.

The R6RS does not allow its write and display proce-
dures to produce a finite representation of cyclic data struc-
tures that can be read reliably by the R6RS read proce-
dure, but does allow those procedures to go into an infinite
loop when asked to print cyclic data. The R7RS requires
write to use datum labels when printing cyclic data, as in
#1=(0 . #1#), but forbids datum labels when there are no
cycles. Larceny’s write and display procedures therefore
produce datum labels only when their R6RS behavior is es-
sentially unspecified, which is a rare example of interoper-
ability made possible by underspecification in the R6RS in-
stead of the R7RS.

Larceny’s read procedure is implemented by a machine-
generated finite state machine and strong LL(1) parser that
accept the union of R7RS, R6RS, R5RS, and Larceny-
specific syntax. Action routines called by the state machine
and parser perform all of the checking necessary to deter-
mine whether the syntax is allowed by the input port. The
complexity of these checks makes it impractical for Larceny
to allow easy customization of its read procedure.

7. Unicode
Larceny uses the R6RS reference implementation of Uni-
code written by Mike Sperber and myself, upgraded to Uni-
code 7.0 [19, 25]. A trivial conversion of this reference im-
plementation to use R7RS library syntax and R7RS libraries
has made the R6RS (rnrs unicode) library available to
any implementation of the R7RS that can represent Unicode
characters and strings [4, 23].

The R6RS requires implementations to support Unicode
characters and strings, but the R7RS standard made that
optional.

I tested ten implementations of the R7RS: the eight listed
in section 9.1, plus Picrin and Husk Scheme. Of those ten,
Picrin is the only one that cannot represent arbitrary Unicode
characters. Chicken can represent all Unicode characters but
defaults to strings limited to the Latin-1 subset of Unicode;
I am told that Chicken can also support full Unicode strings.
The other implementations support Unicode strings as well
as characters.

The R7RS (scheme char) library is almost a sub-
set of the R6RS (rnrs unicode) library, adding only
digit-value while omitting char-general-category,
three procedures that implement title case, and four proce-
dures that convert strings to Unicode normalization forms
NFC, NFD, NFKC, or NFKD. The R6RS and R7RS specifi-
cations of char-numeric? look slightly different, but that’s
a minor mistake in the R6RS that was corrected in R7RS.

5 Scheme and Functional Programming Workshop 2015

The R6RS requires string-downcase to handle Greek
sigma as specified by Unicode Standard Annex #29 [24].
This implies detection of word boundaries to decide whether
to use final or non-final sigma. Even so, the Unicode spec-
ification does not handle all Greek text correctly, because
there are situations that cannot be distinguished without
knowing what the text means. The R7RS explicitly allows
string-downcase to convert every upper-case sigma to a
non-final sigma. Of the ten R7RS implementations tested,
Gauche, Kawa, native Larceny, Petit Larceny, and Sagittar-
ius appear to handle Greek sigma as specified by the R6RS
and Unicode 7.0.

R6RS Section 11.12 says implementors should make
string-ref run in constant time, and it does in all six
implementations of the R6RS I tested. The R7RS standard
says “There is no requirement for this procedure to execute
in constant time.” Of the eight R7RS systems tested that nor-
mally support Unicode strings, only Foment, Larceny, Petit
Larceny, and Sagittarius define a string-ref that runs in
constant time.

Although the Scheme standards have done an excellent
job of specifying a string data type that can accomodate Uni-
code without assuming any particular representation or char-
acter set beyond ASCII, mutable strings of fixed length are
now a local pessimum in the design space. Scheme Work-
ing Group 2 is therefore considering the addition of a new
data type for immutable sequences of Unicode characters
[6]. This new data type would provide efficient sequential
access in both directions, efficient extraction of substrings,
efficient searching, and space efficiency approaching that of
UTF-8. What’s more, this new data type could be imple-
mented so random accesses run in O(1) time.

8. Assessment
Interoperability between R7RS and R6RS code is illustrated
by Larceny’s use of R6RS standard libraries to implement
most of the R7RS libraries, and by the mix of R7RS/R6RS
libraries Larceny uses to implement more than 50 SRFI
libraries.

Interoperability is also demonstrated by using Larceny’s
--r7rs and --r6rsmodes to run conformance tests, bench-
marks, and tests of SRFI libraries.

8.1 Racket’s R6RS tests
Racket’s implementation of the R6RS includes a test suite
that runs 8897 tests of conformance to the R6RS standard.
Petite Chez Scheme appears to be the only free implemen-
tation of the R6RS for Linux that passes all of those tests.
Racket v6.1.1 fails three tests; two of those failures involve
Unicode title case, and are caused by not implementing Uni-
code Standard Annex #29 [15]. Sagittarius version 0.6.4 fails
three tests, including one in which it detects a violation of
the letrec restriction at compile time instead of run time
and then refuses to run the program. (R6RS Section 11.4.6

says implementations must detect letrec violations during
evaluation of the expression, which implies run time.) Vicare
v0.3d7 fails six tests, including two in which it detects vio-
lations of the letrec restriction at compile time and refuses
to run the program.

In --r6rs mode, native Larceny and Petit Larceny both
fail one test by allowing it to run to completion despite
a violation of the letrec restriction that goes undetected
because the variables involved in the violation are not used.
In --r7rs mode, native Larceny and Petit Larceny both fail
a second test when (log 0) throws an exception whose
R7RS-conforming condition object doesn’t belong to the
specific condition class demanded by the R6RS.

So Larceny is reasonably compatible with the R6RS even
when operating in --r7rs mode.

8.2 Larceny’s R7RS tests
Using Racket’s R6RS tests as a starting point, I imple-
mented a test suite that (as of this writing) runs 2156 tests
of conformance to the R7RS standard. That number is a bit
misleading, because many of those tests would have been
split into several distinct tests had they been written in the
Racket style. Comparing lines of code, our R7RS test suite
is slightly larger than Racket’s R6RS test suite.

In --r7rs mode, native Larceny and Petit Larceny both
fail one test because they have not yet implemented the
generalized ellipsis form of syntax-rules.

When the R7RS tests are run in Larceny’s --r6rs mode,
that mode’s strict enforcement of R6RS syntax rejects four
sections of the R7RS test suite that use R7RS syntax for
bytevectors or strings. When an #!r7rs flag is added at the
beginning of those four files, Larceny passes 2117 of the
tests while failing 39:

• 1 test failed as it did in R7RS mode.
• 1 test failed because the error procedure used R6RS

semantics.
• 11 tests of (scheme write) failed because R6RS syn-

tax was written.
• 13 tests of (scheme read) failed because R7RS data

were read from a string that did not contain an #!r7rs

flag.
• 10 tests of (scheme repl) failed.
• 3 tests of (scheme load) failed.

These failures show how strict enforcement of R6RS mus-
tard interferes with interoperability. Smooth interopera-
tion between R7RS and R6RS code is achieved only by
Larceny’s more liberal R7RS modes.

8.3 Benchmarks
We have collected 68 R6RS benchmarks and translated 57
of them into R7RS benchmarks [1]. The untranslated bench-

6 Scheme and Functional Programming Workshop 2015

marks test features such as hashtables or sorting routines that
have no counterpart in R7RS.

In --r6rs mode, native Larceny runs all of the R6RS
benchmarks successfully.

In --r7rs mode, Larceny should be able to run all R6RS
benchmarks but does not. In --r7rs mode, Larceny returns
an incorrect result for the R6RS read0 benchmark because it
accepts R7RS-legal symbols that begin with the @ character
even after an #!r6rs flag has been read from the input port.
This is a bug in the read procedure’s enforcement of R6RS
syntax, discovered only during preparation of this paper; this
bug will be fixed in Larceny v0.99, which should be released
by the end of August 2015.

In --r7rs mode, native Larceny runs all of the R7RS
benchmarks successfully.

Even in --r6rs mode, native Larceny runs all of the
R7RS benchmarks successfully. They were, after all, trans-
lated from R6RS code without making any special effort to
introduce R7RS-specific syntax or features.

8.4 SRFI tests
The source distribution of Larceny contains 49 R7RS pro-
grams that test SRFI libraries whose names follow the R7RS
convention and another 45 R6RS programs that test SRFI li-
braries whose names follow the SRFI 97 (R6RS) convention.

All of the R6RS test programs can be run in either
--r7rs or --r6rs mode.

All but one of the R7RS test programs can be run in
either --r7rs or --r6rs mode. The R7RS test program
for (srfi 115 regexp) contains an R7RS symbol syntax
that’s rejected by the --r6rs mode’s strict enforcement of
R6RS syntax.

9. Portability
Portability of R7RS or R6RS code is determined as much or
more by the available implementations as by the standards
themselves.

9.1 Implementations
In May 2015, I was able to benchmark eight free implemen-
tations of the R7RS on the Linux machine we use for bench-
marking:

• Chibi Scheme 0.7.3
• Chicken Scheme Version 4.9.0.1
• Foment Scheme 0.4 (debug)
• Gauche version 0.9.4
• Kawa 2.0
• Larceny v0.98
• Petit Larceny v0.98
• Sagittarius 0.6.4

I was able to install three more implementations that claim to
implement at least part of R7RS, but was unable to get them
to run enough of the R7RS benchmarks to make benchmark-
ing worthwhile.

I was able to benchmark six free implementations of the
R6RS on that same Linux machine:

• Larceny v0.98
• Petit Larceny v0.98
• Petite Chez Version 8.4
• Racket v6.1.1
• Sagittarius 0.6.4
• Vicare Scheme version 0.3d7, 64-bit

I tried to install several other implementations of the R6RS
without success; most had not been updated for several
years. Vicare is a fork of Ikarus, which I did not try to install
because it is no longer being maintained.

As should be expected, R6RS and R6RS/R7RS systems
tend to be more mature than R7RS-only systems. Half of the
six R6RS systems were able to run all of Larceny’s R6RS
benchmarks, and the other half failed on only one bench-
mark. Chibi, native Larceny, and Sagittarius were the only
R7RS systems able to run all of Larceny’s R7RS bench-
marks, with two others (Chicken and Petit Larceny) able to
run all but one benchmark [3].1

The R6RS systems also tended to run faster. Taking the
geometric mean over all benchmarks, Petit Larceny was the
third slowest implementation of the R6RS but the second
fastest implementation of R7RS.

I am, however, impressed by the promise of the R7RS
implementations.

9.2 File naming conventions
The R7RS and R6RS standards do not specify any mapping
from library names to files or other locations at which the
code for a library might be found. R6RS non-normative
appendix E emphasizes the arbitrariness of such mappings.
R7RS Section 5.1 meekly suggests

Implementations which store libraries in files should
document the mapping from the name of a library to
its location in the file system.

Fortunately, de facto standards have been emerging.
An R6RS library named (rnrs io simple (6)) is

typically found within a file named rnrs/io/simple.sls.
(The version is typically ignored. On Windows systems,
backslashes would be used instead of forward slashes.) An
R7RS library named (srfi 113 sets) is typically found
within a file named srfi/113/sets.sld. That file may
consist of a define-library form that specifies the exports
and imports but includes its definitions from another file. If

1 The next release of Kawa is expected to run all of the R7RS benchmarks.

7 Scheme and Functional Programming Workshop 2015

(define-library (baz)

(export x y)

(import (scheme base))

(begin

(define x 10)

(define y (+ x x))))

Figure 1. An R7RS library in a file named baz.sld.

(import (scheme base)

(scheme write)

(scheme process-context)

(baz))

(write (list x y))

(newline)

(exit)

Figure 2. An R7RS program in a file named pgm.

(import (scheme base)

(scheme load)

(scheme write)

(scheme process-context))

(load "baz.sld")

(import (baz))

(write (list x y))

(newline)

(exit)

Figure 3. A similar R7RS program in a file named pgm2.

so, the included file is typically named sets.body.scm and
placed within the same directory as the sets.sld file.

For the (include "sets.body.scm") convention to
work, implementations must search for the included file
within the directory of the including file. Chicken, Gauche,
Kawa, Larceny, and Petit Larceny do so, and the develop-
ment version of Foment 0.5 is said to do so as well.

9.3 Auto-loading conventions
The R7RS standard does not say whether library files must
be loaded explicitly before the libraries they contain can be
imported. This underspecification is impeding the portability
of R7RS programs.

Some implementations of the R7RS apparently require
library files to be loaded (using the load procedure of
(scheme load)) before the libraries they contain can be
imported.

Other implementations of the R7RS load library files
automatically when the libraries they contain are imported,
using file naming conventions and a search path to locate
those libraries. All tested implementations of the R6RS use
this approach as well.

Consider, for example, the baz library of Figure 1 and
the R7RS program shown in Figure 2. If the baz.sld and
pgm files are located within the current working directory of
a Linux machine, then seven of the ten implementations I
tested will run the program using command lines shown in
the appendix.

If the closely related program of Figure 3 is contained
within a file named pgm2 in that same directory, then it too
can be run by seven of the ten implementations. (For details,
see the appendix.)

Of the implementations tested, Foment, native Larceny,
Petit Larceny, and Sagittarius appear to be the only ones that
can run both versions of the program without changing the
file names or source code. The portability of R7RS programs
will be enhanced if implementors follow their example.

9.4 Lightweight libraries improve modularity
If baz.sld and pgm are concatenated into a single file,
then Chicken, Foment, Gauche, Kawa, native Larceny, Petit
Larceny, and Sagittarius will run the program. This appears
to be the most portable way to distribute a complete R7RS
program that defines its own libraries.

That’s a substantial shift from R6RS practice. Native
Larceny and Petit Larceny seem to be the only implementa-
tions that allow an R6RS program’s libraries to be defined
within the same file that contains the top-level program it-
self.

The R6RS editors appear to have thought of R6RS li-
braries as a mechanism for distributing code that would
probably have to be translated into implementation-specific
module systems and go through a fairly heavyweight instal-
lation process, as with Racket collections, before they could
be imported into a program [14].

As can be seen in reference implementations of recent
SRFIs, the R7RS community thinks of R7RS libraries as a
lightweight and portable tool for constructing more modular
programs. I believe that’s progress.

9.5 R6RS standard libraries
It’s all very well to say the R6RS is a proper subset of R7RS
as implemented by Larceny, but how easy would it be to
make that happen in other implementations of the R7RS?

Most of the standard R6RS libraries have been ported to
R7RS and can be downloaded from snow-fort.org:

(r6rs base)

(r6rs unicode)

(r6rs bytevectors)

(r6rs lists)

(r6rs sorting)

(r6rs control)

(r6rs exceptions)

(r6rs files)

(r6rs programs)

(r6rs arithmetic fixnums)

8 Scheme and Functional Programming Workshop 2015

(r6rs hashtables)

(r6rs enums)

(r6rs eval)

(r6rs mutable-pairs)

(r6rs mutable-strings)

(r6rs r5rs)

These correspond to the (rnrs *) libraries of R6RS, but
have been renamed to avoid conflict with the original R6RS
libraries as provided by R6RS/R7RS implementations such
as Sagittarius and Larceny. These libraries use cond-expand
to import the corresponding (rnrs *) library if it is avail-
able, which guarantees full interoperability with any of the
standard R6RS libraries that may be provided by implemen-
tations of the R7RS.

If the corresponding (rnrs *) library is not avail-
able, cond-expand will include portable code that im-
plements the library on top of R7RS standard libraries.
The portable implementation of (r6rs base) implements
identifier-syntax as a stub that generates a syntax error
when used. The portable implementation of hashtables re-
lies on (rnrs hashtables) if that library is available, or
builds upon (srfi 69) if that library is available, or builds
upon a portable implementation of (srfi 69) if nothing
better is available. The (r6rs *) libraries listed above are
otherwise equivalent to their (rnrs *) counterparts.

Implementation of the (r6rs arithmetic flonums)

and (r6rs arithmetic bitwise) libraries should be
straightforward. The (r6rs io simple) library is more
interesting because it should support both R6RS and R7RS
lexical syntax.

The following components of the R6RS are hard to im-
plement portably atop R7RS without sacrificing interoper-
ability with corresponding components of the R7RS imple-
mentation:

• R6RS lexical syntax
• R6RS library syntax
• the R6RS record system
• the (rnrs conditions) library
• parts of the (rnrs io ports) library
• the (rnrs syntax-case) library

R6RS libraries and programs may contain non-R7RS
syntax for bytevectors, identifiers, strings, and even a few
characters. Translation from R6RS to R7RS lexical syntax
is trivial, but the need for translation will interfere with inter-
operability in implementations that reject non-R7RS syntax.

Some implementations of the R7RS may hard-wire their
(scheme read) and (scheme write) libraries so tightly
they can’t be replaced, which will force code that also im-
ports (rnrs io simple) or (r6rs io simple) to re-
name one of the two versions of the read and write proce-
dures.

Translation from library to define-library syntax
is trivial, so the R6RS library syntax is the easiest of
the listed components for R7RS systems to support na-
tively. Without built-in support, the need for a separate
translation step degrades interoperability. The R7RS stan-
dard does not allow define-library forms as the output
of macro expansion. In seven of the ten implementations
tested, library can be defined as a hygienic macro that ex-
pands into code that uses eval to evaluate the corresponding
define-library form in the interaction-environment;
three of those seven already support library natively.

The R7RS (large) standard will probably include a record
system similar to SRFI 99, which can implement the pro-
cedural and inspection layers of R6RS records with full in-
teroperability between those layers and the R7RS, SRFI 9,
and SRFI 99 record systems. R7RS (large) is also likely to
include a macro system capable of implementing the R6RS
syntactic layer on top of SRFI 99.

Implementing the (rnrs conditions) library on top
of SRFI 99 records is straightforward, but integrating its
condition objects into an R7RS system’s native exception
system cannot be done portably.

The (rnrs io ports) library includes several individ-
ual features that sounded good in isolation but do not com-
bine well. Unsurprisingly, those are the features that cannot
be implemented portably on top of the R7RS i/o system:

• port positions
• custom ports
• bidirectional input/output ports

If these problematic features are dropped, then the rest of the
R6RS i/o system can be approximated more or less crudely
in R7RS. To emphasize the crudity of the approximation,
consider the R6RS transcoded-port procedure. In R7RS
systems that don’t distinguish between binary and textual
ports, this procedure can just return its first argument when-
ever its second argument is the native transcoder. Output
ports are hardly ever passed to transcoded-port, so an im-
plementation restriction that rejects any attempt to add non-
native transcoding to a binary output port will seldom cause
trouble. If conversions from interactive binary input ports to
textual are also limited to native transcoding, then non-native
transcoders will be allowed only when the first argument cor-
responds to a bytevector or file, so the transcoded-port

procedure can copy all remaining bytes from the binary port
into a bytevector or temporary file, which it can then open as
a textual port using the specified transcoder.

The (rnrs syntax-case) library might be approxi-
mated using an eval trick as described above for R6RS
library syntax, but that would be unpleasant even if it
works. It’s more practical to wait for R7RS (large), which
is expected to include a macro system with enough power
to approximate syntax-case. Larceny, for example, imple-

9 Scheme and Functional Programming Workshop 2015

ments (rnrs syntax-case)on top of an explicit renaming
macro system, as outlined by SRFI 72 [26, 27].

10. Conclusion
Implementations of the R7RS can achieve near-perfect back-
ward compatibility with the R6RS.

R7RS programmers can derive some benefit from R6RS
libraries even in systems that don’t support the R6RS stan-
dard. Most R6RS standard libraries have been implemented
on top of R7RS [4]. Some of the R6RS standard libraries that
can’t be implemented in R7RS (small) are likely to become
implementable in the anticipated R7RS (large) standard.

R7RS (large) is also expected to include standard libraries
that go well beyond those provided by the R6RS.

The usefulness, portability, and interoperability of R7RS
code are more likely to be limited by the availability and
quality of implementations, and by practical issues such as
file naming and auto-loading conventions, than by incompat-
ibilities between the R7RS and R6RS standards.

A. Appendix
The program in Figure 2 can be run in Chibi Scheme, Fo-
ment, Husk Scheme, native Larceny, Petit Larceny, and
Sagittarius by incanting

chibi-scheme -I . < pgm

foment pgm

huski pgm

larceny --r7rs --path . --program pgm

sagittarius -r7 -L . pgm

That program can be run in Gauche by copying baz.sld to
a file named baz and incanting

gosh -r7 -I . -l pgm

The program in Figure 3 can be run in Chicken, Foment,
Gauche, Kawa, and native Larceny or Petit Larceny by in-
canting

csi -require-extension r7rs pgm2

foment pgm2

gosh -r7 -I . pgm2

kawa --r7rs -f pgm2

larceny --r7rs < pgm2

sagittarius -r7 pgm2

The --path and -L options of Larceny and Sagittarius can
be omitted here because pgm2 loads the library file explicitly.
For some reason, Gauche must be given the analogous -I
option even with pgm2.

The incantation shown for Chicken uses the csi inter-
preter because that fits on a single line. When benchmarking,
I ran Chicken’s compiler (csc) with five command-line op-
tions to enable various optimizations; running the compiled
program then becomes a separate step.

As noted at the end of Section 4, the R7RS prose specifi-
cation of real? refers to the imag-part procedure, which is

available only in implementations that provide the optional
(scheme complex) library. One of the ten tested imple-
mentations of the R7RS does not support that library, but
all of the nine mentioned in this appendix do provide it. Six
of the nine—including Chibi Scheme, which was written by
the chair of Working Group 1 and served as a reference im-
plementation for the R7RS standard—agree with the R7RS
by saying (real? -2.5+0.0i) evaluates to false. Of the
three implementations that disagree with this R7RS exam-
ple, one (Husk Scheme) violates R7RS semantics by refus-
ing to compute (imag-part 2.5), so it also violates the
R7RS prose specification of the real? procedure. Two im-
plementations behave as specified by the R7RS prose. All
but one of the ten implementations behave as specified by
my suggested repair of that prose, as would the outlier (Husk
Scheme) if its imag-part bug were fixed.

Acknowledgments
I am gratified by the assistance given me by implementors
of the R6RS and R7RS systems named here. We aren’t all
working on the same implementation, but we are certainly
working to implement the same or similar language(s), and
have much to offer one another.

I am also grateful to the editors of the R6RS and R7RS
documents, who made enormous progress while creating
standards that allow backward compatibility and interoper-
ability.

John Cowan, an editor of the R7RS standard and chair
of Working Group 2, improved this paper by commenting
upon its first two drafts. He is of course not responsible for
my opinions and outright mistakes, nor is he responsible for
my speculations concerning the R7RS (large) standard being
developed by Working Group 2.

I believe the program committee’s suggestions helped
to improve this paper. I do not know whether the program
committee shares my belief.

References
[1] W. D. Clinger. Larceny home page. URL

www.larcenists.org.

[2] W. D. Clinger. r6rs-editors email archives, May 2006.
URL http://www.r6rs.org/r6rs-editors/2006-May/

001251.html.

[3] W. D. Clinger. Larceny benchmarks, Mar 2015. URL
http:www.larcenists.org/benchmarks2015.html.

[4] W. D. Clinger and T. U. Bayirli/Kammer. R6RS standard li-
braries for R7RS systems, 2015. URL snow-fort.org/pkg.

[5] J. Cowan. PlebisciteObjections. URL
http://trac.sacrideo.us/wg/wiki/

PlebisciteObjections.

[6] J. Cowan. Character span library, 2015.
URL http://trac.sacrideo.us/wg/wiki/

CharacterSpansCowan.

10 Scheme and Functional Programming Workshop 2015

[7] K. Dybvig, W. Clinger, M. Flatt, M. Sperber, and
A. van Straaten. R6RS status report, 2006. URL
www.schemers.org/Documents/Standards/Charter/

status-jun-2006/status-jun06.html.

[8] A. Ghuloum. The portable R6RS li-
brary and syntax-case system, 2008. URL
https://launchpad.net/r6rs-libraries/.

[9] D. V. Horn. SRFI libraries, 2008. URL
http://srfi.schemers.org/srfi-97/srfi-97.html.

[10] Internet Engineering Task Force. IETF RFC 2119: Key words
for use in RFCs to indicate requirement levels, Mar 1999.
URL http://www.ietf.org/rfc/rfc2119.txt.

[11] T. Kato. Implementing R7RS on an R6RS Scheme system. In
Scheme and Functional Programming Workshop, Nov 2014.
URL http://www.schemeworkshop.org/2014/.

[12] R. Kelsey, W. Clinger, and J. Rees. Revised5 Report on
the Algorithmic Language Scheme. Journal of Higher
Order and Symbolic Computation, 11(1):7–105, 1998. URL
http://www.scheme-reports.org/.

[13] Larcenists. Larceny user manual. URL
http://www.larcenists.org/doc.html.

[14] Racketeers. Installing libraries. URL
http://docs.racket-lang.org/r6rs/

Installing Libraries.html.

[15] Racketeers. R6RS conformance. URL
http://docs.racket-lang.org/r6rs/conformance.html.

[16] W. Shakespeare. Hamlet. 1602. Act 1, scene 4.

[17] A. Shinn, J. Cowan, and A. A. Gleckler. Revised7 Report
on the Algorithmic Language Scheme. 2013. URL
http://www.scheme-reports.org/.

[18] M. Sperber. Revised6 Report on the Algorithmic Language
Scheme — Rationale. 2007. URL http://www.r6rs.org/.

[19] M. Sperber and W. D. Clinger. Unicode library, 2007. URL
https://github.com/larcenists/larceny/tree/

master/tools/Unicode/r6rs-unicode.

[20] M. Sperber, R. K. Dybvig, M. Flatt, and A. van
Straaten. Revised5.92 Report on the Algorithmic Lan-
guage Scheme — Standard Libraries. Jan. 2007. URL
http://www.r6rs.org/history.html.

[21] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten.
Revised6 Report on the Algorithmic Language Scheme.
Journal of Functional Programming, 19(S1):1–301, 2007.
URL http://www.r6rs.org/.

[22] M. Sperber, R. K. Dybvig, M. Flatt, and A. van
Straaten. Revised6 Report on the Algorithmic Language
Scheme — Non-Normative Appendixes. 2007. URL
http://www.r6rs.org/.

[23] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten.
Revised6 Report on the Algorithmic Language Scheme —
Standard Libraries. 2007. URL http://www.r6rs.org/.

[24] Unicode Consortium. Unicode Standard Annex #29, 2014.
URL http://www.unicode.org/reports/tr29/.

[25] Unicode Consortium. The Unicode Standard, 2014. URL
http://unicode.org/.

[26] A. van Tonder. Hygienic macros, 2005. URL
http://srfi.schemers.org/srfi-72/srfi-72.html.

[27] A. van Tonder. R6RS libraries and macros, 2007. URL
http://www.het.brown.edu/people/andre/macros/.

11 Scheme and Functional Programming Workshop 2015

State Exploration Choices in a Small-Step Abstract Interpreter

Steven Lyde Matthew Might
University of Utah

{lyde,might}@cs.utah.edu

Abstract
When generating the abstract transition graph while computing
k-CFA, the order in which we generate successor states is not
important. However, if we are using store widening, the order in
which we generate successor states matters because some states
will help us jump to the minimum fixed point faster than others.
The order in which states are explored is controlled by the work list.
The states can be explored in depth-first or breadth-first fashion.
However, these are not the only options available. We can also use
a priority queue to intelligently explore states which will help us
reach a fixed point faster than either of these two approaches. In
this paper, we evaluate the different options that exist for a work
list.

1. Introduction
Control-flow analysis of higher-order languages is hard, with the
simplest implementation of the original formulation of k-CFA be-
ing cubic [8] and proven to be complete for polynomial time [9].
Faster implementations exist that are less precise. Henglein’s sim-
ple closure analysis runs in almost linear time by using unifica-
tion to solve constraints [5]. The analysis of Ashley and Dybvig
achieves a better asymptotic bound by limiting the number of times
we visit an expression in the analysis [2]. However, in this paper
we will focus on the original implementation of k-CFA.

While control-flow analysis of higher-order languages is com-
plex, the machinery underneath is actually quite simple. However,
in these simple mathematics there are several nuances that can af-
fect the precision of the analysis. In the past, the primary focus
has been the allocation function, which controls the address of the
variables we are binding [4]. With this seemingly simple function,
the polyvariance, complexity, and precision of the analysis is con-
trolled. However, this is not the only source of nuance in a small-
step abstract framework.

In this paper, we will first quickly recall what a concrete small-
step semantics looks like for lambda calculus in continuation-
passing style. We will then proceed to demonstrate how this can
easily be changed into an abstract interpreter with only a few small
changes [10]. From there we will discuss how this abstract inter-
preter can be made to run quickly by using global widening in an
algorithm known as the time-stamp algorithm [8].

Once an understanding of the time-stamp algorithm is attained,
we can dive into the meat of this paper. It will be shown that it is
important how exactly we handle the work list in the algorithm. The
order in which we visit states and generate successor states matter.

The main contribution of this paper is to point out and demon-
strate the idea that the order of exploration matters when iterating
over the work list.

Our second contribution is to demonstrate that using a priority
queue for the work list can increase the speed of the analysis and
also decrease the amount of memory required for the analysis. We

demonstrate with empirical evidence the efficacy of this idea, even
though the gains might not be substantial.

2. Concrete Semantics
For this paper we will operate over a simple continuation-passing
style lambda calculus.

v ∈ Var is a set of identifiers
lam ∈ Lam ::= (λ (v1 . . . vn) call)

f,æ ∈ AExp ::= v | lam
call ∈ Call ::= (f æ1 . . .æn)

Unlike the pure lambda calculus, we allow lambda terms to
have multiple arguments. We also only allow the body of a lambda
term to be a function call and require that each sub-expression of
a function call be either a variable or lambda term. This language
form has been shown to be a suitable intermediate representation
for compilers of higher-order languages [1]. It also has the benefit
that its semantics can be described in a single transition relation.

We will now describe an abstract machine that can be used to
evaluate a program. This machine will be very similar to the CESK
machine of Felleisen [3]. Though it does not have a continuation
component, because the continuations are explicit in the expres-
sions. This is also slightly a non-standard state space because we
have environments mapping to addresses rather than values. This
is to facilitate the abstraction of the machine using the Abstracting
Abstract Machines approach [10]. It also has a time component to
facilitate allocating addresses. It is a list of all the call sites we have
visited as we have executed the program.

ς ∈ Σ = Call× Env × Store × Time

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ Clo

clo ∈ Clo = Lam× Env

a ∈ Addr = Var × Time

t ∈ Time = Call∗

We have a transition relation that allows us to go from one state
to the next (⇒) ⊆ Σ× Σ.

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ, σ, t)⇒ (call , ρ′′, σ′, t′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ, σ)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ A(æi, ρ, σ)]

t′ = tick(ς)

ai = alloc(vi, t
′)

12 Scheme and Functional Programming Workshop 2015

This transition relation relies on three auxiliary functions: one to
evaluate atomic expressions, one to advance our time component,
and one to allocate addresses.

The atomic evaluator A : AExp × Env × Store ⇀ Clo eval-
uates variables by looking up their address in the environment and
then looking up the value of that address in the store. It evaluates
lambda terms by closing over the current environment to create a
closure.

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ)

To advance our time component we use tick : Σ → Time and
which helps us keep track of all the call sites we have visited as we
have executed our program. We prepend the current call expression
to the existing time, thus creating a unique time-stamp for every
state in the execution of our program.

tick(call , ρ, σ, t) = call : t

The allocation function alloc : Var × Time → Addr simply
pairs the variable with the current time-stamp to generate a unique
address.

alloc(v, t) = (v, t)

Given a program, we must be able to inject it into an initial state.
Using I : Call→ Σ we pair a program with an empty environment,
empty store, and time-stamp with no elements.

I(call) = (call , [], [], 〈〉)
Once we have our initial state, we can execute our program

by generating successor states using our transition relation (⇒
) ⊆ Σ × Σ. We can simulate the halt continuation by having a
free variable in our program. The transition relation will not have
any closure bound to the free variable and thus cannot generate a
successor state. Execution terminates when the halt continuation is
applied. The meaning of the program is whatever value gets passed
to the halt continuation.

3. Abstract Semantics
We will now explore how we can take this concrete semantics
and make it abstract. Our abstract semantics will be guaranteed to
terminate given any program. We begin by first abstracting our state
space. Looking at the original concrete state space, the source of
unboundedness is that our time-stamps can grow arbitrarily large.
However, if we limit the length of our time-stamps to length k, our
state space becomes finite. This is the crucial value of the parameter
to k-CFA. Besides this small change, the abstract state space looks
very similar to the concrete state space, with the notable exception
that the time-stamps are now finite. Because time is finite, the
number of addresses is also finite. This makes our abstract domain
finite.

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore × T̂ime

ρ̂ ∈ Ênv = Var ⇀ Addr

σ̂ ∈ Ŝtore = Âddr → P
(
Ĉlo
)

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr = Var × T̂ime

t̂ ∈ T̂ime = Callk

However, having a finite set of addresses means that in our
abstract interpretation some addresses will be reused. This means
that our store must be able to handle having more than one value,
so we now map to a set of closures rather than a single closure.

These sets cannot grow arbitrarily large because there are only
a finite number of closures. This is why the indirection of the
store was introduced. Having environments point to values rather
than addresses would introduce structural recursion, because values
contain environments. However, with the introduction of the store
the cycle is broken [10].

Our abstract transition relation () ⊆ Σ̂ × Σ̂ changes slightly
from the concrete one in order to handle multiple closures. And we
now join (t) values in the store. This means we take the union
of the sets of closures for the ones that previous existed at that
address and the set of closures that we are adding and store that
at the address.

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂, t̂) (call , ρ̂′′, σ̂′, t̂′), where

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(æi, ρ̂, σ̂)]

t̂′ = t̂ick(ς̂)

âi = âlloc(vi, t̂
′)

The auxiliary functions change slightly as well. The abstract
atomic evaluator Â : AExp × Ênv × Ŝtore → P

(
Ĉlo
)

now
returns a set of closures rather than just a single value.

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)}

The abstract allocation function âlloc : Var × T̂ime → Âddr
does not change except in its types from its concrete counterpart,
because it is the time that we have limited.

âlloc(v, t) = (v, t)

However, the function to advance out time-stamp t̂ick : Σ →
T̂ime has changed from the concrete version in that it just take the
last k call sites.

t̂ick(call , ρ̂, σ̂, t̂) =

first k values︷ ︸︸ ︷
call : t̂

We still need to inject our program into an initial abstract state
Î : Call → Σ̂, but it is still paired with an empty environment,
empty store, and empty time-stamp.

Î(call) = (call , [], [], ())

To perform the analysis we must then compute all the reachable
states using our abstract transition relation () ⊆ Σ̂× Σ̂, generat-
ing successor states until a fixed point is reached.

{
ς̂ : Î(call) ∗ ς̂

}

4. Implementing k-CFA
The simplest way to compute k-CFA is to construct the set of all
reachable states over the transition relation, starting at the initial
state. Any graph-searching algorithm is sufficient for finding this
set. This will give us the desired result because every state in the
concrete execution has an approximation in the set of abstract states
generated by k-CFA. This means that any behavior that occurs in
the concrete execution will be captured by the abstract execution.

Shivers devised two techniques for more quickly computing
the set of reachable states: the aggressive-cutoff algorithm and the
time-stamp algorithm [8].

13 Scheme and Functional Programming Workshop 2015

We will give a short description of these two algorithms shortly
and then will describe the algorithm in more detail.

4.1 The Aggressive-Cutoff Algorithm
While exploring the state space and generating the abstract tran-
sition relation, we only ever add information, we never take any
away. We can exploit this monotonicity while exploring the state
space. If a state we are about to explore is weaker than (v) a state
that we have already visited, we know that we have already cap-
tured the behavior of that state and do not need to generate its suc-
cessor states again. This is the essence of the aggressive-cutoff al-
gorithm.

4.2 The Time-Stamp Algorithm
The time-stamp algorithm is a form of the aggressive-cutoff al-
gorithm. In the time-stamp algorithm, we modify the state-space
search by joining the store of the state just pulled from the work
list with the least upper bound of all the stores seen so far.

States contain a large environment and store that to compare
requires a deep traversal. These states are sizable structures. To
combat this issue we perform the following steps.

We keep around a single-threaded store that we update after
each transition. The store grows monotonically, so this is safe to
do. We might add additional values that would not occur in the
concrete execution, but this is always sound. Whenever we update
the store with a new value, we increment a time-stamp. Then in our
states we no longer keep a reference to the store but to a time-stamp.
A time-stamp with a lesser value is weaker than a time-stamp of a
greater value. Thus we can do subsumption testing based on the
value of the time-stamp. The larger time-stamp approximates the
smaller time-stamp.

This technique implements the aggressive cutoff algorithm
while at the same time lowering the storage overhead. The orig-
inal implementation of the time-stamp algorithm [8] showed that it
did not cost too much precision.

4.3 Detailed Algorithm
Putting together the two above techniques, exploiting configuration
monotonicity for early termination and configuration-widening,
leads to an algorithm for computing Shivers’ original k-CFA.

This algorithm in Figure 1 is taken directly from Might, but
adapted slightly to fit the notation of this paper [6].

Using a side-effected global table, Ŝ, we map the latest evalua-
tion context (call , ρ̂, t̂) to the latest generation of the store that has
been explored with that context:

Ŝ : Call× Ênv × T̂ime → N

During the search, if the current state was explored with a
generation of the store that is greater than or equal to the current
generation of the global store then that branch of the search has
terminated. The monotonicity of the abstract transition relation
guarantees that the behavior has already been approximated.

Otherwise, we widen the store of the state with the global store
and generate successors, updating Ŝ to reflect that we have explored
it with the current generation of the global store.

From the successor states, we see if they have contributed any
changes to the global store. If they have, we widen the global store
and bump its generation.

4.4 The Work List
Traditionally, when executing a work list algorithm, the order in
which we explore states is not important. However, when we use
the time-stamp algorithm, since each state can possibly contribute
different values to the global store, the order does have an effect on

the number of states that are explored. It has this effect because the
quicker we can reach a fixed point of our global store, the quicker
we can stop exploring states.

The work list is generally implemented using a list, with new
states being appended to the front. This results in a depth-first
search. However, we can explore these states in any order we wish.
In the next section, we will discuss possible ordering schemes on
this list, where we examine the contents of states in order try and
guess which ones will help us reach the fixed point of the global
store the quickest.

5. Priority Queue
There are four components to a state which we can use to guess
if it will help us climb the lattice quicker: the expression, the
environment, the store, and the time stamp.

ς̂ ∈ Σ̂ = Exp× Ênv × Ŝtore × T̂ime

In addition to the properties of these components, we can also
take advantage of temporal properties that arise during the execu-
tion of the abstract analysis.

We will now explore what properties of each of these compo-
nents we could possibly use to help us order them in our work list.
The abbreviations in the parenthesis are used in the evaluation sec-
tion.

5.1 Expression
These are possible priority schemes based on the expression com-
ponent of a state.

• The type of the expression. If our language was richer and
allowed for more language forms such as if or set!, we could
prioritize a given form over another (CTP).

• The number of subexpressions. It might be the case that more
subexpressions means that more values will be bound, thus we
should prioritize larger expressions over smaller ones (CSZ).

• Where the expression appears in the program. We could explore
expressions that appear deeper in the program first (CDL) or
we could take more of a breadth-first approach and try to visit
expressions that appear higher in our program first (CBL).

• The number of times we have visited an expression. When we
come across an expression in the course of the abstract interpre-
tation we might want to prioritize states with expressions that
we have already seen or vice versa (CFQ).

• Top level function or inner function. If the lambda term we are
invoking originally was a top-level function in our program, it
might be beneficial to explore inner functions before exploring
other top-level functions.

• Prefer user lambdas over continuation lambdas. When convert-
ing to continuation-passing style, there are two types of lambda
terms: user lambdas and continuation lambdas. Returns get con-
verted into invocations of continuation lambdas (CCR).

• The size of the continuation. This might give a rough approxi-
mation of how much computation is left to do for a given state.

5.2 Environment
These are possible priority schemes based on the environment
component of a state.

• The environment size. This is another way to give a comparable
value to an expression. A larger environment might signify that
we will bind more values (ESZ).

• The flow set size of every address in the environment. How big
the flow sets are determine partially how big the flow sets are

14 Scheme and Functional Programming Workshop 2015

Ŝ ← ⊥ Seen time-stamps, Call× Ênv × T̂ime → N.
Σ̂todo ←

{
Î(pr)

}
The work list.

σ̂∗ ← ⊥ The global store.
n∗ = 1 The generation of the global store.
procedure SEARCH()
if Σ̂todo = ∅

return
remove ς̂ ∈ Σ̂todo

(call , ρ̂, σ̂, t̂)← ς̂

n← Ŝ[call , ρ̂, t̂] The latest generation seen with this context.
if n ≥ n∗

return SEARCH() Done—by monotonicity of .
ς̂ ← (call , ρ̂, σ̂ t σ̂∗, t̂) Install the widened store.
Σ̂next ← {ς̂ ′ : ς̂ ς̂ ′} Explore successors.
Ŝ[call , ρ̂, t̂]← n∗ Mark the current generation of the store as seen.
σ̂next ←

⊔{
σ̂ : (call , ρ̂, σ̂, t̂) ∈ Σ̂next

}
Check each successor for changes.

if σ̂next A σ̂∗
n∗ ← n∗ + 1 Bump up the generation of the global store.
σ̂∗ ← σ̂next Widen the global store.

Σ̂todo ← Σ̂todo ∪ Σ̂next

return SEARCH()

Figure 1. State-space search algorithm using the time-stamp algorithm for computing k-CFA: SEARCH

that we will be binding to values. It stands to reason the larger
these flow sets, the more values we will bind quickly (EFS).

5.3 Store
These are possible priority schemes based on the store component
of a state.

• The flow set size of the function we are applying. This deter-
mines how many successor states we will have. If we prefer
states that will generate more states, we might be able to subse-
quently pick the best of those.

• The flow set size of the arguments. Given that we want to reach
the fixed point as quick as possible and that adding entries in the
store is what gets us there, the more values we bind the better
(SAS).

• Number of successor states. If our language supported an if
form, we could ask the question of whether we will be exploring
one branch, both branches, neither branch (SBF).

• The flow set size of the values we are binding. If our language
supported set!, we might want to consider the flow set size of
the variable we are binding or the flow set size of the value we
are binding.

• Global store generation. The generation of the store is a metric
of the size of the store. We might prefer to explore states that
already have a larger store.

5.4 Time
These are possible priority schemes based on the time component
of a state.

• The number of times we have seen a given time. We will
often see the same time stamp in the course of an abstract
interpretation. We could prefer states with calling contexts that
we have already seen or put a preference on new ones (TFQ).

• The value of the time. We could prefer longer contexts or
shorter contexts. For contexts of the same length, we could

prefer ones that appear earlier or later in the program we are
analyzing (TVL).

6. Evaluation
To evaluate our idea, we took the implementation from Might et al.
[7] which uses the time stamp algorithm. We adapted it so it would
use a priority queue for its work list,

Observing the run times from the original paper, you will note
that the benchmarks run significantly faster. Updating the code to
run on the latest version of Scala results in a 2x speedup. We
also identified a bug where successor states were being added
multiple times to the work list. Removing these duplicate entries
also resulted in a 2x speedup.

We are also running on better hardware, but given that we reran
the original implementation on the newer hardware as a point of
reference, this should not be a concern.

The abbreviations and descriptions for the priority schemes we
evaluated in our implementation can be found in the previous sec-
tion. We used the same benchmarks analyzed by the original imple-
mentation [7]. The first two benchmarks, eta and map, test common
functional idioms; sat is a back-tracking SAT-solver; regex is a reg-
ular expression matcher based on derivatives; scm2java is a Scheme
compiler that targets Java; interp is a meta-circular Scheme inter-
preter; scm2c is a Scheme compiler that targets C.

Tables 1 and 2 compares the number of states that were gener-
ated for each benchmark. In some cases we can see that we generate
only a fifth of the states as compared to the original implementa-
tion.

Tables 3 and 4 compares the runtimes of the varying strategies.
In the best case we were able to achieve a 1.5x speedup.

Although no specific strategy is best for all benchmarks, the
strategy CFQ tends to do well both in terms of reducing the number
of states and decreasing the runtime. For a control-flow analysis
that needs to use low memory and run fast, using one of the
strategies that performs better than the baseline BFS and DFS
strategies is worth considering.

15 Scheme and Functional Programming Workshop 2015

eta map sat regex scm2java interp scm2c
BFS 54 230 488 3692 7888 651 38899
DFS 66 186 293 2252 2595 657 21195
CTP 53 223 284 1831 2394 653 13663
CSZ 54 192 373 2063 2933 653 14510
CDL 54 141 343 2630 4110 653 19618
CBL 54 230 234 2205 2848 648 25808
CFQ 56 166 223 1271 1718 657 7660
CCR 53 272 520 2292 3557 656 14327
ESZ 48 178 296 2248 2966 649 25845
EFS 48 178 296 2248 2966 649 25845
SAS 53 247 373 1743 3414 655 13337
SBF 61 223 382 1645 3467 653 10288

Table 1. Number of states generated for k = 0.

eta map sat regex scm2java interp scm2c
BFS 53 361 8696 12965 10001 635 157396
DFS 38 360 17216 11328 13397 635 130302
CTP 49 341 8831 6560 4080 635 94931
CSZ 53 344 6749 8467 3828 635 98366
CDL 53 260 4527 6039 4054 635 99471
CBL 44 343 7575 4369 4448 635 99333
CFQ 53 310 5819 7207 7651 635 96594
CCR 53 464 9855 8230 5444 635 98609
ESZ 51 342 6644 8932 4119 635 118390
EFS 51 342 6644 8932 4119 635 118390
SAS 49 442 8847 5661 5762 635 84808
SBF 47 456 9600 8283 6136 635 86390

Table 2. Number of states generated for k = 1.

eta map sat regex scm2java interp scm2c
BFS 73 217 293 889 1214 828 3296
DFS 75 195 233 704 790 815 2617
CTP 66 217 230 622 777 818 2338
CSZ 69 202 264 692 850 832 2376
CDL 66 167 249 781 936 831 2344
CBL 80 229 216 691 831 867 2737
CFQ 68 182 194 536 708 828 1824
CCR 67 236 295 707 880 812 2366
ESZ 65 188 232 729 831 815 2754
EFS 71 200 238 729 881 878 3149
SAS 67 238 267 633 903 822 2319
SBF 74 221 267 618 901 826 2170

Table 3. Time in milliseconds for each benchmark for k = 0.

eta map sat regex scm2java interp scm2c
BFS 65 274 1441 1587 1341 830 8878
DFS 56 273 1820 1478 1514 819 6413
CTP 61 272 1436 1122 940 825 6253
CSZ 65 271 1333 1354 921 827 6297
CDL 66 232 1139 1114 943 849 6247
CBL 65 274 1433 929 968 879 6603
CFQ 63 256 1184 1201 1227 834 5967
CCR 63 308 1533 1323 1048 821 6068
ESZ 62 269 1284 1348 931 831 7469
EFS 69 276 1355 1464 1006 895 9806
SAS 63 310 1537 1130 1127 834 5338
SBF 62 308 1528 1329 1116 822 5814

Table 4. Time in milliseconds for each benchmark for k = 1.

All benchmarks were run with a k of zero or one. Every strategy
produced the same store for its final result.

7. Conclusion
In this paper we have demonstrated that how states are processed is
important when computing k-CFA. We have described that there is
a difference between doing a depth-first vs breadth-first search. We
have also demonstrated that using a specific type of queue can play
an important role in limiting the number of states explored.

Acknowledgments
This material is partially based on research sponsored by DARPA
under agreements number AFRL FA8750-15-2-0092 and by NSF
under CAREER grant 1350344. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, New York, NY, USA, 2007.
[2] J. M. Ashley and R. K. Dybvig. A practical and flexible flow analysis

for Higher-Order languages. ACM Transactions on Programming
Languages and Systems, 20(4):845–868, 1998.

[3] M. Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Aug. 1987.

[4] T. Gilray and M. Might. A survey of polyvariance in abstract interpre-
tations. In J. McCarthy, editor, Trends in Functional Programming,
volume 8322 of Lecture Notes in Computer Science, pages 134–148.
Springer Berlin Heidelberg, 2014.

[5] F. Henglein. Simple closure analysis. Technical report, Department of
Computer Science, University of Copenhagen (DIKU), Mar. 1992.

[6] M. Might. Environment Analysis of Higher-Order Languages. PhD
thesis, Georgia Institute of Technology, June 2007.

[7] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and exploiting
the k-CFA paradox: Illuminating functional vs. Object-Oriented pro-
gram analysis. In Proceedings of the 31st Conference on Programming
Language Design and Implementation (PLDI 2006), pages 305–315,
Toronto, Canada, June 2010.

[8] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, May 1991.

[9] D. Van Horn and H. G. Mairson. Flow analysis, linearity, and PTIME.
In M. Alpuente and G. Vidal, editors, Static Analysis, volume 5079 of
Lecture Notes in Computer Science, pages 255–269. Springer Berlin
Heidelberg, 2008.

[10] D. Van Horn and M. Might. Abstracting abstract machines. In
Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’10, pages 51–62, New York, NY,
USA, 2010. ACM.

16 Scheme and Functional Programming Workshop 2015

∗

==

∗

booleano
listo

member x
ls ls car x

> (member 'x '(a x c))
'(x c)

17 Scheme and Functional Programming Workshop 2015

membero
member

(define-relation (membero x ls o)
(fresh (a d)

(== `(,a . ,d) ls)
(conde
((== x a) (== ls o))
((membero x d o)))))

a d ls

x a ls o
(membero x d o)

(== `(,a . ,d) ls)
ls run run*

membero
run*

> (run* (q) (membero 'x '(a x c) q))
'((x c))

membero ==

membero member
car

> (run* (q) (membero 'x '(a x x) q))
'((x x) (x))

conda condu
assert retract

run 1 run

run

=/=
dif/2

membero

(define-relation (membero x ls o)
(fresh (a d)
(== `(,a . ,d) ls)
(conde
((== x a) (== ls o))
((=/= x a) (membero x d o)))))

> (run* (q) (membero 'x '(a x x) q))
'((x x))

run*
y

x z (x x)
x z (x)

_.0
(=/= ((_.0 x)))

y
x

> (run* (q)
(fresh (y z)
(== q `(,y ,z))
(membero 'x `(a ,y x) z)))

'((x (x x))
((_.0 (x)) (=/= ((_.0 x)))))

absento
absento x y

x y =/=

=/= y
x absento

symbolo
numbero not-pairo

()

18 Scheme and Functional Programming Workshop 2015

cons

==

occurs?

invalid?

make-call/initial-state

(define-syntax-rule (make-call/initial-state cid ...)
(define S0 (make-immutable-hasheqv '((==) (cid) ...))))

make-call/initial-state
==

make-
call/initial-state

make-constraint-goal-constructor
make-

constraint-goal-constructor

(define (((make-constraint-goal-constructor key) . terms) S/c)
(let ((S (ext-S (car S/c) key terms)))
(if (invalid? S) '() (list `(,S . ,(cdr S/c))))))

ext-S invalid?

make-constraint-
goal-constructor

> (define == (make-constraint-goal-constructor '==))
> (define =/= (make-constraint-goal-constructor '=/=))
> (define symbolo (make-constraint-goal-constructor 'symbolo))
> (define absento (make-constraint-goal-constructor 'absento))
...

ext-S

cons

(define (ext-S S key terms)
(hash-update S key ((curry cons) (apply list* terms))))

invalid?
make-invalid? invalid?

==

make-invalid? make-invalid?

(define-syntax-rule (make-invalid? (cid ...) p ...)
(λ (S)
(let ((cid (hash-ref S 'cid)) ...)
(cond

((valid-== (hash-ref S '==))
=> (λ (s) (or (p s) ...)))
(else #t)))))

==

make-call/initial-state

make-constraint-system
make-

invalid? invalid?

syntax-parse
syntax-local-introduce

19 Scheme and Functional Programming Workshop 2015

(define-syntax (make-constraint-system stx)
(syntax-parse stx

[(_ (cid:id ...) p ...)
(with-syntax
([invalid? (syntax-local-introduce #'invalid?)]
[S0 (syntax-local-introduce #'S0)]
[== (syntax-local-introduce #'==)])
#'(begin

(define invalid? (make-invalid? (cid ...) p ...))
(define S0
(make-immutable-hasheqv '((==) (cid) ...)))

(define == (make-constraint-goal-constructor '==))
(define cid (make-constraint-goal-constructor 'cid))
...))]))

==
valid-==

unify

(define (valid-== ==)
(foldr

(λ (pr s)
(and s (unify (car pr) (cdr pr) s)))

'()
==))

==

make-constraint-
system

> (make-constraint-system
())

==
=/= absento symbolo not-pairo

=/=

=/=
=/=

> (make-constraint-system
(=/= absento symbolo not-pairo)
(λ (s)
(ormap
(λ (pr) (same-s? (car pr) (cdr pr) s))
=/=))

...)

same-s?

same-s?

unify

#| Term ⨯ Term ⨯ Subst ⟶ Bool |#
(define (same-s? u v s) (equal? (unify u v s) s))

absento
mem?

absento

> (make-constraint-system
(=/= absento symbolo not-pairo)
...
(λ (s)
(ormap

(λ (pr) (mem? (car pr) (cdr pr) s))
absento))

...)

mem? u
v s

same-s? u v
s

#| Term ⨯ Term ⨯ Subst ⟶ Bool |#
(define (mem? u v s)

(let ((v (walk v s)))
(or (same-s? u v s)

(and (pair? v)
(or (mem? u (car v) s)

(mem? u (cdr v) s))))))

symbolo
symbolo

walk

> (make-constraint-system
(=/= absento symbolo not-pairo)
...
(λ (s)
(ormap

(λ (y)
(let ((t (walk y s)))
(not (or (symbol? t) (var? t)))))

symbolo))
...)

not-pairo
not-pairo

> (make-constraint-system
(=/= absento symbolo not-pairo)
...
(λ (s)
(ormap

(λ (n)
(let ((t (walk n s)))
(not (or (not (pair? t)) (var? t)))))

not-pairo)))

20 Scheme and Functional Programming Workshop 2015

#hasheqv(...)

=/= (=/= . ((c . 0) (0 . b)))
(c . 0) (0 . b) =/=

> (call/initial-state 1
(call/fresh
(lambda (x)
(conj

(== 'a x)
(conj
(=/= x 'b)
(conj
(absento 'b `(,x))
(conj

(not-pairo x)
(conj
(symbolo x)
(=/= 'c x)))))))))

'((#hasheqv((== . ((a . 0)))
(=/= . ((c . 0) (0 . b)))
(absento . ((b 0)))
(symbolo . (0))
(not-pairo . (0)))

.
1))

booleano
listo

val-ofo

(define-relation (val-ofo e env o)
(conde

((symbolo e) (lookupo e env o))
((booleano e) (== e o) (listo env))
...))

e o
lookupo

listo

(define-relation (lookupo x ls o)
(fresh (aa da d)
(== ls `((,aa . ,da) . ,d))
(conde
((== aa x) (== da o) (listo d))
((=/= aa x) (lookupo x d o)))))

listo
lookupo

val-ofo
booleano #t

#f
#t #f

booleano

booleano

#t
#f

booleano
booleano

symbolo

> (make-constraint-system
(=/= absento symbolo not-pairo booleano)
...
(let ((not-b

(λ (s)
(or (ormap

(λ (pr) (same-s? (car pr) (cdr pr) s))
=/=)

(ormap
(λ (pr) (mem? (car pr) (cdr pr) s))
absento)))))

(λ (s)
(ormap
(λ (b)
(let ((s1 (unify b #t s)) (s2 (unify b #t s)))

(and s1 s2 (not-b s1) (not-b s2))))
booleano)))

(λ (s)
(ormap

(λ (b)
(let ((b (walk b s)))
(not (or (var? b) (boolean? b)))))

booleano))
(λ (s)
(ormap
(λ (b)
(ormap
(λ (y) (same-s? y b s))
symbolo))

booleano)))

> (call/initial-state 1
(call/fresh
(lambda (x)

(conj (=/= #f x) (conj (=/= #t x) (booleano x))))))
'()

listo

listo booleano

21 Scheme and Functional Programming Workshop 2015

listo

walk-to-end cdr
x s cdr

x s
listo

#| Term ⨯ Subst ⟶ Bool |#
(define (walk-to-end x s)
(let ((x (walk x s)))

(if (pair? x) (walk-to-end (cdr x) s) x)))

> (make-constraint-system
(=/= absento symbolo not-pairo booleano listo)
...
(λ (s)
(ormap
(λ (l)

(let ((end (walk-to-end l s)))
(ormap
(λ (y) (same-s? y end s))
symbolo)))

listo))
(λ (s)
(ormap
(λ (l)

(let ((end (walk-to-end l s)))
(ormap
(λ (b) (same-s? b end s))
booleano)))

listo))
(λ (s)
(ormap
(λ (l)

(let ((end (walk-to-end l s)))
(let ((s^ (unify end '() s)))
(and s^

(ormap
(λ (n) (same-s? end n s))
not-pairo)

(or
(ormap

(λ (pr) (same-s? (car pr) (cdr pr) s^))
=/=)

(ormap
(λ (pr) (mem? (car pr) (cdr pr) s^))
absento))))))

listo))
(λ (s)
(ormap
(λ (l)

(let ((end (walk-to-end l s)))
(ormap
(λ (pr)

(and
(null? (walk (car pr) s))
(mem? end (cdr pr) s)))

absento)))
listo))

...)

end
end () not-pairo

end =/= absento
end ()

> (call/initial-state 1
(call/fresh
(lambda (x)

(conj
(listo x)
(conj
(not-pairo x)
(disj

(=/= '() x)
(absento x '())))))))

'()

listo end
absento ()

end
()

end

> (call/initial-state 1
(call/fresh
(lambda (x)

(conj
(listo x)
(absento '() x)))))

'()

22 Scheme and Functional Programming Workshop 2015

invalid?

http://www.infoq.com/presentations/Core-logic-SQL-ORM

α

http://www.cs.indiana.edu/~webyrd

http://kanren.
sourceforge.net/

http://www.youtube.com/watch?v=09zlcS49zL0

µ
http:

//schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf

23 Scheme and Functional Programming Workshop 2015

http://doi.acm.org/10.1145/41625.41635

R

http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren

https://github.com/webyrd/
miniKanren-with-symbolic-constraints

α TAP

http://www.infoq.
com/presentations/core-logic

#| Nat ⟶ Var |#
(define (var n) n)
#| Term ⟶ Bool |#
(define (var? n) (number? n))
#| Var ⨯ Term ⨯ Subst ⟶ Bool |#
(define (occurs? x v s)

(let ((v (walk v s)))
(cond
((var? v) (eqv? x v))
((pair? v) (or (occurs? x (car v) s)

(occurs? x (cdr v) s)))
(else #f))))

#| Var ⨯ Term ⨯ Subst ⟶ Maybe Subst |#
(define (ext-s x v s)

(cond
((occurs? x v s) #f)
(else `((,x . ,v) . ,s))))

#| Term ⨯ Subst ⟶ Term |#
(define (walk u s)

(let ((pr (assv u s)))
(if pr (walk (cdr pr) s) u)))

#| Term ⨯ Term ⨯ Subst ⟶ Maybe Subst |#
(define (unify u v s)

(let ((u (walk u s)) (v (walk v s)))
(cond
((eqv? u v) s)
((var? u) (ext-s u v s))
((var? v) (ext-s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))
(and s (unify (cdr u) (cdr v) s))))

(else #f))))
#| (Var ⟶ Goal) ⟶ State ⟶ Stream |#
(define ((call/fresh f) S/c)

(let ((S (car S/c)) (c (cdr S/c)))
((f (var c)) `(,S . ,(+ 1 c)))))

#| Stream ⟶ Stream ⟶ Stream |#
(define ($append $1 $2)

(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

#| Goal ⟶ Stream ⟶ Stream |#
(define ($append-map g $)

(cond
((null? $) `())
((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

#| Goal ⟶ Goal ⟶ Goal |#
(define ((disj g1 g2) S/c) ($append (g1 S/c) (g2 S/c)))
#| Goal ⟶ Goal ⟶ Goal |#
(define ((conj g1 g2) S/c) ($append-map g2 (g1 S/c)))
#| Stream ⟶ Mature Stream |#
(define (pull $) (if (promise? $) (pull (force $)) $))
#| Maybe Nat⁺ ⨯ Mature ⟶ List State |#
(define (take n $)

(cond
((null? $) '())
((and n (zero? (- n 1))) (list (car (pull $))))
(else (cons (car $)

(take (and n (- n 1)) (pull (cdr $)))))))
#| Maybe Nat⁺ ⨯ Goal ⟶ List State |#
(define (call/initial-state n g)

(take n (pull (g `(,S0 . 0)))))
(define-syntax-rule (define-relation (rid . args) g)

(define ((rid . args) S/c) (delay/name (g S/c))))

24 Scheme and Functional Programming Workshop 2015

Type Check Removal Using Lazy
Interprocedural Code Versioning

Baptiste Saleil
Université de Montréal

baptiste.saleil@umontreal.ca

Marc Feeley
Université de Montréal
feeley@iro.umontreal.ca

Abstract
Dynamically typed languages use runtime type checks
to ensure safety. These checks are known to be a cause
of performance issues. Several strategies are used to re-
move type checks but are expensive in a JIT compilation
context or limited in the absence of code duplication.
This paper presents an interprocedural approach based
on Basic Block Versioning that allows the removal of
many type checks without using an expensive analysis
while simplifying the compilation process by avoiding
the use of an intermediate representation. The exper-
imentations made with our Scheme implementation of
the technique show that more than 75% of type checks
are removed in generated code.

1. Introduction
Dynamic typing lets the compiler verify the type safety
at runtime through type checks directly inserted into
the generated machine code. These operations are
known to be a cause of performance issues of dynami-
cally typed languages.

A lot of work has been done to reduce the cost of
type checks. Type inference [5, 10] determines types, if
possible, at compile time to avoid checks in the gener-
ated code. Tracing JIT compilation [9] interprets code
to collect information, including types, during execution
in order to generate optimized code using this informa-
tion. Both techniques are not effective at removing type
checks on polymorphic variables with known types. For
example if an analysis shows that a variable n could
only take the types string and char, then to be con-
servative the compiler will surround primitives using n
with a type check. Another approach is to use Basic
Block Versioning [3] (BBV) in a Just In Time (JIT)
compiler to lazily specialize generated code depending
on information gathered during previous executions by
duplicating polymorphic code. In the same example as
above, two different versions of the code will be gener-
ated, one for string and one for char as required by
the actual type of n during multiple executions. In ad-
dition to this more precise context-dependent strategy,

BBV doesn’t need an expensive analysis or fixed point
algorithm to infer types.

This paper presents a JIT compilation technique
based on BBV which extends the original technique and
addresses issues encountered in its implementation in a
compiler for Scheme [13]. The first contribution is an ex-
tremely lazy compilation design which allows the com-
piler to directly translate s-expressions into stubs able
to generate machine code. This allows the compiler to
avoid the use of an intermediate representation such as
Single Static Assignment form [4] and Three Address
Code [11] and consequently save compilation time. This
is particularly adapted in our context of JIT compila-
tion in which compilation time directly impacts execu-
tion time. The other contribution is the use of multiple
specialized function entry points allowing the compiler
to propagate gathered typing information through func-
tion calls.

This paper is organized as follows. Section 3 presents
the general approach and how types are discovered
with the use of extremely lazy compilation. Section 4
explains how we extended code versioning to propagate
accumulated information interprocedurally. Section 5
explains the problem introduced by free variables and
how it is solved. Section 6 presents experimental results.
Related work and future work are presented in sections
7 and 8.

2. Basic Block Versioning
Basic Block Versioning is an approach allowing to gen-
erate several specialized versions of a basic block. Each
version is specialized according to the information avail-
able when compiling this block. The information is
gathered from the compilation of the previous basic
blocks in the execution flow therefore the technique does
not require static analysis or profiling.

Gathered information could be the type of live vari-
ables. Because it is hard to predict all types used dur-
ing execution, the compiler can’t generate all versions
ahead of time without a combinatorial explosion. JIT
compilation allows to only generate versions actually

25 Scheme and Functional Programming Workshop 2015

executed. Because BBV allows keeping several versions
of the same code, the compiler can generate specialized
versions based on variable types even if the code uses
polymorphic variables.

Here is a simple example using type information to
generate specialized versions of basic blocks:
(if (number? a)

(< a 100)
...)

When compiling this code, if the compiler knows
that a is a fixnum, it generates a specialized version
of the true branch using comparison on fixnums, and
without type check for primitive <. All the subsequent
executions in which a is known to be a fixnum will use
this specialized version. If, with another execution, a is
known to be a flonum, the compiler generates a new
version using a floating point number comparison and
no type check. All the subsequent executions in which
a is a flonum will use this version.

We then have two versions of the same code spe-
cialized for particular compilation context. Each time a
version is generated, the compiler may discover new in-
formation that will possibly cause the generation of new
more specialized versions of the successor basic blocks.
Extremely lazy compilation aims to use code versioning
to simplify the compilation process.

3. Extremely Lazy Compilation
3.1 Presentation
Typical compilers use an intermediate representation
such as SSA or TAC. These representations are used to
facilitate static analysis and code generation but they
are expensive to generate. This compilation overhead is
problematic if the implementation uses a JIT compiler
because the compilation time impacts the execution
time.

Extremely lazy compilation aims to simplify the im-
plementation of code versioning by directly transform-
ing the AST into code stubs with little overhead.

The idea is to do a more fine-grained JIT compilation
by representing each not yet executed continuation of
the program as a machine code stub. Then, a compila-
tion context is associated with each expression and all
information discovered during the compilation of this
expression can directly be beneficial to the compilation
and execution of the next expression in the execution
flow.

3.2 Implementation
To implement BBV, a compiler must maintain a com-
pilation context which associates type information to
each live variable of the current basic block. Because
our implementation is based on a stack machine, where
temporary values are quickly consumed, we decided to

maintain a context containing type information of all
variables available in the current scope to avoid a more
expensive liveness analysis. This allows the compiler to
translate from s-expressions to code stubs with no prior
code analysis other than those used to properly imple-
ment the Scheme language (such as mutation analysis
and free variable analysis). However the use of a stack
machine is not a requirement for the implementation of
extremely lazy compilation.

In our implementation, we decided to keep only the
information of simple (not compound) Scheme types.
For example when creating a pair, the value is tagged
as pair and we lose the possibly known information of
its car and cdr. This allows avoiding compound type
tracking that rapidly causes combinatorial explosion of
the types and therefore an explosion in the number of
versions.

...
(let ((c (integer- >char n)))

(char=? c #\C)
...)

Figure 1. Example of a lazy code object chain

To implement extremely lazy compilation we create
separate code stubs, which we call lazy code objects, for
each piece of code and not only at a basic block level.
Each object contains exactly three things (i) a code gen-
erator which, given a typing context, is able to generate
a specialized version of the code associated to this stub
(ii) a table which contains entry points of each already
generated version, and (iii) a reference to the successor

26 Scheme and Functional Programming Workshop 2015

object in the execution flow. Then these objects are or-
ganized in a similar way to Continuation Passing Style
[13] using the successor reference to trigger the compi-
lation of the continuation by giving it the newly discov-
ered type information during compilation of the current
expression. Figure 1 shows a simplified representation of
the lazy code objects chain created from the associated
Scheme code. If the compiler triggers the compilation
of the first object with a context in which we know that
n is a number and with an empty stack, the compiler
successively triggers the compilation of the next object
updating the context information at each step. We see
that after the compilation of integer->char the com-
piler knows that a character is now on top of the stack.
After binding c to the value on top of the stack, the
compiler knows that c is a character for the rest of
compilation and then compile a version of char=? in
which it knows that both operands are characters. In
this specific example, because no branching instruction
is encountered, every object belongs to the same basic
block thus all the chain is generated inline without ex-
tra jump instruction, exactly like the original approach
of BBV. Thereby this extremely lazy design allows the
compiler to keep type information of constants, or other
newly discovered type for future compilation.

It is worth mentioning that using extremely lazy
compilation, the compiler behaves like original BBV
technique which allows it to also enrich the context with
type information discovered from type checks previously
executed in the flow (A type check is represented by a
lazy code object, two successors and two distinct typing
contexts associated to the two objects).

3.3 Chain construction
Figure 2 shows a simplified code of the function gener-
ating the lazy objects chain from a given s-expression.
Similarly to CPS, the function also takes the successor
lazy code object as a second parameter. If the function
is called for the first time, an object with a generator
able to generate the final return instructions sequence
is given.

Each call to make-lazy-code-stub creates a lazy
code object with the given code generator. A lazy code
object is consumed by the function jump-to which is
always called from within a generator. This function
selects the version to jump to (the version associated to
the current context) or generates a new inlined version
if it does not exist yet. Each call to gen-chain creates
a chain of lazy code objects ready to be consumed using
the two functions make-lazy-code-stub and jump-to
and returns the lazy code object representing the entry
point of the chain.

Two cases are shown in the figure. In the first case the
s-expression is a number then the compiler creates an
object which, when triggered, generates a simple imme-

(define (gen-chain ast successor)
(cond

...
((number? ast)

(make-lazy-code-stub
(lambda (ctx) ; Generator

(x86-push ast)
(jump-to successor

(ctx-push ctx CTX_NUM)))))
...
((eq? (car ast) 'integer- >char)

(let ((lazy-conv
(make-lazy-code-stub

(lambda (ctx) ; Generator
(x86-pop rax)
(x86-to-char rax)
(x86-push rax)
(jump-to

successor
(ctx-push (ctx-pop ctx)

CTX_CHAR)))))
(lazy-check

(make-lazy-code-stub
(lambda (ctx) ; Generator

(x86-pop rax)
(x86-cmp tag_rax TAG_NUM)
(x86-jne label-error)
(x86-push rax)
(jump-to

lazy-conv
(ctx-push (ctx-pop ctx)

CTX_NUM))))))

(gen-chain
(cadr ast)
(make-lazy-code-stub

(lambda (ctx) ; Generator
(if (eq? (type-top ctx) CTX_NUM)

(jump-to lazy-conv ctx)
(jump-to lazy-check ctx)))))))

...))

Figure 2. Example of how to build a lazy code object
chain from a s-expression and a successor lazy code
object.

diate push instruction and triggers the next object with
an updated context. The second case shows an example
of using the context. If the primitive integer->char is
encountered the compiler generates a first object which,
when triggered, is only used to trigger the right object
depending on current type information, if the value is a
number no check is needed, otherwise the object com-
piling a type check is triggered.

4. Interprocedural Type Propagation
4.1 Presentation
The approach presented in previous section aims to
collect as much type information as possible during
execution and compilation of previous lazy code objects
in order to specialize the next objects in the execution

27 Scheme and Functional Programming Workshop 2015

flow using this information. A limit is that this approach
does not apply interprocedurally.

In order to transmit gathered information from func-
tion caller to callee the compiler needs to specialize
functions entry points. This implies that each function
possibly has several entry points depending on the type
of actual parameters.

However commonly used closure representations such
as flat-closure and others [7] only allow to store one
entry point for the associated procedure. Because the
arguments are possibly polymorphic in Scheme, and
only one entry point is allowed, the compiler loses type
information to use a generic entry point.

4.2 Implementation
Our solution to keep collected information is to extend
the traditional flat closure representation by adding a
reference to an external table which contains all entry
points of the procedure, each one specialized according
to the known types of parameters. This external table
is associated to a procedure and therefore shared by
every instance of this procedure. The initial entry point
now represents the generic entry point without any
assumptions on the type of parameters. This table is
created at compile time, thus possibly in a dedicated
memory area, and will live for the rest of the execution.

The problem with this external table is that with the
higher-order functions of Scheme, the compiler doesn’t
necessarily know the identity of the callee function when
compiling a call site, and is not able to determine
the offset to use to get the right entry point from
the table. Our solution to this problem is to keep a
global layout shared by all the external tables which
allows the compiler to associate a fixed offset to a
specific context. Thereby the compiler is able to use
this offset to retrieve the callee entry point regardless
of the procedure identity.

When a procedure is first compiled, the compiler
creates the external table and fills it with the function
stub address. When compiling a call site, the compiler
retrieves the offset associated to the calling context.
If this context was never used before, a new offset is
reserved to it. The generated code then gets the entry
point (which is either the stub address or the address
of a generated version) and jump to it. Note that the
compiler adds the context as an additional argument
to allow the stub to generate a version for this specific
context. Whenever the stub is triggered, it generates the
version and patches the external table entry which now
contains the address of the newly generated version.

Figure 3 shows an example of a memory state after
execution. At the top is the global layout in which we
can see that each procedure call used one of the 5 con-
texts, regardless of the procedure called. Then we see
that two procedures were compiled. The external table

Figure 3. Extension of flat closure representation

of the first procedure contains two entry points which
means that two specialized versions have been gener-
ated during execution. The first is associated to ctx2
and the other to ctx3, all other slots contain proce-
dure stub address. This procedure was instantiated two
times and both instances share the same external ta-
ble. Finally, three versions of the other procedure have
been generated using a single instance. This time the
three versions are specialized for contexts ctx2, ctx4
and ctx5, and other slots contain the address of the
code stub of the associated procedure. We can see in
the figure that the offset associated to a context is ac-
tually invariant in all external tables.

4.3 External table limitation
This global layout could be a limitation if there is a com-
binatorial explosion on the types of parameters during
execution. In this case, each external table must con-
tain enough entries to store all of these contexts greatly
increasing the memory used by the tables. Although
this hypothetic explosion must be handled, our mea-
sures show that there is no such explosion in practice.
Moreover, some simple heuristics can be used to reduce
the size of the global table by removing the contexts in
which we don’t have enough information:

28 Scheme and Functional Programming Workshop 2015

• If at a call site the compiler knows nothing about
the type of parameters, it can simply use the fallback
generic entry point. This eliminates all unnecessary
entries from the global table and avoids the use of
the indirection to retrieve the external table which
is useless in this case.

• If the list of effective parameters in a calling context
is long it probably means that they will be received
in a rest parameter and the type information will be
lost. In this case the compiler could use the fallback
generic entry point.

• If the compiler doesn’t know enough types on pa-
rameters, for example if there are 4 arguments and
only one is known to be an integer, it could fall back
to the generic entry point. In this precise case the
cost of the indirection to get the offset from external
table is more expensive than checking the type of an
integer (as well as other non heap allocated objects)
using tag types in callee function.

• Of course a better heuristic is probably a combina-
tion of heuristics.

A complementary aggressive solution could be to set
a maximum allowed size for global layout and stop
specializing entry points when the limit is reached.
This can be done by using the generic entry point if a
calling context, which doesn’t exist in the global layout
after reaching the limit, is used. This completely avoids
the combinatorial explosion but potentially loses useful
information. This is a technique to use as a last resort
to prevent the hypothetical explosion.

The table presented in figure 4 shows the amount of
memory (expressed in kilobytes) used by the entry point
tables, the number of lines of code and the number of
tables created for each benchmark. Because the stan-
dard library used by our implementation contains 110
functions, none of the benchmarks create less than 110
tables. The total size correspond to the perfect situation
in which the size of the external tables is exactly equal
to the minimum size required by the global layout. Our
current implementation arbitrarily sets a constant size
for the execution but there are two ways to avoid table
overflows :
• Directly allocate a large amount of memory and

stop specializing when the table is full. This can be
coupled to the heuristics presented above.

• Use simple algorithm of dynamic reallocation to re-
size the external tables coupled to a garbage collector
phase to update references.

The table shows that many benchmarks need less
than 64 kilobytes to store the external tables. Only the
benchmark compiler requires more (2.8 megabytes).
The bigger memory footprint is not really significant

Benchmark Lines of
code

Number of
tables

Total tables
size (kb)

compiler 11195 1561 2847
earley 647 187 64
conform 454 208 47
graphs 598 161 43
mazefun 202 149 37
peval 629 187 31
sboyer 778 149 23
browse 187 128 16
paraffins 172 133 14
boyer 565 134 13
nqueens 30 117 12
dderiv 74 121 8
string 24 113 5
deriv 34 112 4
destruc 45 113 4
perm9 97 117 4
triangl 54 112 4
array1 25 115 3
cpstak 24 116 3
primes 26 114 3
tak 10 111 3
ack 7 111 2
divrec 15 112 2
sum 8 112 2
cat 19 112 <1
diviter 16 112 <1
fib 8 111 <1
sumloop 22 113 <1
takl 26 113 <1
wc 38 112 <1

Figure 4. Space usage of the external tables

considering the current amount of memory available on
the devices.

4.4 Impact on calling sequence
The technique presented in this section allows the com-
piler to propagate the collected information through the
call sites using the external entry points table. This
however requires changes in calling convention.

Figures 5 shows the additions made to common call-
ing convention. This figure assumes that the called clo-
sure is in r8. The more expensive one is the indirec-
tion to retrieve the external table from the closure. In
fact this cost is the same of the one introduced by vir-
tual method table of object oriented programming us-
ing single inheritance [6]. But this indirection cost is
compensated if the information in the context avoids at
least one type check on a heap allocated object such as
string or pair in Scheme because this check requires
a memory access to retrieve the sub-tag representing

29 Scheme and Functional Programming Workshop 2015

;Get external table location from closure
mov rax, [r8]
;Get entry point
mov rax, [rax+ctx_offset]
;Add context id as extra argument
mov rdi, ctx_id
;Call entry point
call rax

Figure 5. Calling sequence with interprocedural prop-
agation (Intel syntax)

the type. The other is the extra mov used to give the
context (the constant ctx id) to the callee in case the
call triggers a function stub. This time the move cost
is directly compensated by the fact that the compiler
doesn’t need to give the number of actual parameters
because the stub can retrieve this information directly
from the context.

The interprocedural type propagation presented in
this section only applies to the function entry points.
Currently, our implementation does not track the type
of returned values.

5. Free Variables
The presence of higher order functions means that in
general, the compiler doesn’t know the identity of the
called function when compiling a call site. Thus, when
compiling a call site it doesn’t have any information
on the type of the free variables so it is only able to
specialize the entry point regarding the type of param-
eters. With specialized entry points, if two instances of
the same closure but with different free variable types
are called at the same call site, the same entry point
is used, potentially resulting on an error. Lets take the
well-known functional adder as an example:
(define (make-adder n)

(lambda (x)
(+ n x)))

(let ((add10 (make-adder 10))
(add#f (make-adder #f)))

(add10 1)
(add#f 1))

In this code two adders are created. The first adds
10 to its argument. The second tries to add #f to
its argument and causes an error. When calling both
adders, the calling context is the same because in both
cases there is only one argument which is known to
be a number. It is then obvious that both instances
can’t share the same entry points table because the free
variable n is polymorphic.

The easiest solution, which doesn’t lose the gathered
type information of free variables is to specialize the ex-

ternal table of a function according to the type combina-
tions of its free variables. It is then possible to have sev-
eral external tables shared between the instances, with
same free variable types, of a function. In the example
above, because the tables are specialized according to
the type of free variables, both instances use a distinct
entry points table. This handling of free variables al-
lows to keep tracking their types, but slightly increases
the number of external tables, and the amount of mem-
ory they use. The number of tables and the total size
previously presented in figure 4 consider this approach.

Finally, if the compiled language allows variable mu-
tation, the compiler is not able to specialize external
tables regarding the type of mutable free variables be-
cause a type mutation could occurs at any time. The
type of these variables can not be tracked.

6. Results
6.1 Number of tests removed
This section presents the results obtained with our
Scheme implementation of lazy interprocedural code
versioning. Figure 6 shows the number of runtime type
checks executed with and without interprocedural prop-
agation enabled without any maximum in the number
of generated versions of the same lazy code object. The
executed checks shown in this figure are percentages
relative to an execution in which the maximum num-
ber of versions is set to 0 (i.e. only a generic version
is used thus all type checks are executed). The ex-
tremely lazy compilation coupled to code versioning al-
low the compiler to remove a lot of type checks. For
the benchmark array1, BBV removes almost all type
tests. What is more interesting is that interprocedu-
ral propagation of type information allows the compiler
to remove a lot more type checks. For the benchmarks
cpstak, string and sum, the interprocedural propaga-
tion allows to remove almost all type checks. For the
other benchmarks, the interprocedural propagation still
removes a significant number of type checks. On aver-
age, around 63.7% of type checks are removed without
interprocedural propagation and 77.2% with both BBV
and interprocedural propagation.

6.2 Limiting the number of versions
We originally expected that the number of versions
would grow faster than the original versioning for two
reasons:

• The compiler specializes the versions according to
the type information of all variables and not only
live ones.

• Entry points are also versioned. Moreover the com-
piler specializes the entry points according to the
type information of all actual parameters.

30 Scheme and Functional Programming Workshop 2015

0%

20%

40%

60%

80%

100%

a
rr

a
y
1

cp
st

a
k

st
ri

n
g

su
m

a
ck

p
e
rm

9

d
iv

re
c

fi
b

su
m

lo
o
p

ta
k

d
e
st

ru
c

g
ra

p
h
s

p
a
ra

ff
in

s

m
a
ze

fu
n

p
ri

m
e
s

co
m

p
ile

r

d
iv

it
e
r

e
a
rl

e
y

ca
t

n
q
u
e
e
n
s

w
c

b
ro

w
se

co
n
fo

rm

sb
o
y
e
r

d
e
ri

v

p
e
v
a
l

tr
ia

n
g
l

d
d
e
ri

v

b
o
y
e
r

ta
kl

max=inf, interprocedural disabled max=5, interprocedural enabled max=inf, interprocedural enabled

Figure 6. Percentage of executed check relative to generic versions

Figure 6 also shows the effect of changing the maxi-
mum number of versions on the number of type checks
removed. We choose to show this result with a maxi-
mum of 5 versions to refer to the first presented BBV
and to compare it to the result without limiting the
number of versions. The benchmark browse is affected
with a change of 4.5% which is not a huge increase in
addition to being the only significantly affected bench-
mark. Moreover, our experiments showed that there is
no pathological case causing an explosion on the num-
ber of versions as we would expect. However, our im-
plementation currently doesn’t support other number
types than fixnum and because we think that a lot of
type mutations occur with number-related operations
such as integer overflow, it would be more interesting,
once implemented, to study types evolution again so the
effect of the number of maximum versions on the total
amount of removed type checks.

A behavior worth mentioning appears in figure 7.
This figure shows the percentage of removed type checks
with a maximum of 3 versions and with and without
interprocedural propagation enabled. We can see on
benchmarks browse, earley and nqueens that when
enabling interprocedural propagation more dynamic
checks are executed. This is due to the fact that, be-
cause entry points are specialized according to the type
of all actual parameters, a few versions among the lim-
ited number are wasted in the sense that a known type
used to generate a new version is possibly attached to
a variable which is not or little used in the rest of ex-
ecution. When the limit is reached, all the subsequent
versions use the fallback generic entry point whereas
they are possibly based on type information attached
to most used variables. This results in an increase of the
number of executed type checks. Even if this behavior

(define (fibcps n k)
(if (< n 2)

(k n)
(fibcps (- n 1)

(lambda (r1)
(fibcps (- n 2)

(lambda (r2)
(k (+ r1 r2))))))))

(define (fib n)
(fibcps n (lambda (r) r)))

Figure 8. CPS implementation of a function calculat-
ing the nth Fibonacci number

almost disappears starting from a limit of 4, it must
be considered as a new parameter to consider when
limiting the number of versions.

6.3 Propagation of the returned value
Our implementation does not currently propagate the
type of the return values. A mechanism close to the
one used to specialize the entry points could be used,
which would amount to using Continuation Passing
Style. Let’s use the code presented in figure 8 as an ex-
ample. This code is a CPS program computing the nth

Fibonacci number. Each return site is transformed into
a function call representing a call to the continuation.
Because the compiler is able to propagate the type in-
formation through the function calls, the collected type
information is propagated through the rest of the func-
tion. An interesting result with this example is that if
the type of n is known to be a number when calling
the fib function, and because of the CPS, absolutely
no type checks are executed. If the compiler does not
know the type of n its type is checked at the first ex-

31 Scheme and Functional Programming Workshop 2015

0%

20%

40%

60%

80%

100%

a
rr

a
y
1

cp
st

a
k

st
ri

n
g

su
m

a
ck

p
e
rm

9

d
iv

re
c

fi
b

su
m

lo
o
p

d
e
st

ru
c

ta
k

p
a
ra

ff
in

s

p
ri

m
e
s

m
a
ze

fu
n

d
iv

it
e
r

ca
t

co
m

p
ile

r

w
c

g
ra

p
h
s

co
n
fo

rm

sb
o
y
e
r

d
e
ri

v

p
e
v
a
l

tr
ia

n
g
l

b
ro

w
se

d
d
e
ri

v

e
a
rl

e
y

b
o
y
e
r

ta
kl

n
q
u
e
e
n
s

max=3, interprocedural disabled max=3, interprocedural enabled

Figure 7. Percentage of executed check with limit on the number of versions set to 3

ecution of the expression (< n 2) and the information
will be propagated to the rest of the program and this
results in the execution of only one type test.

7. Related work
Several works have been done to remove dynamic type
checks. Type inference [5] uses static analysis to recover
type information from source program and allows to
remove type checks in some cases. Henglein [10] also
presented an interprocedural type inference in almost-
linear time. Type inference performs expensive static
work not necessarily suitable for a JIT compiler and is
also often limited by the absence of code duplication.

Other approaches, such as Gradual Typing first pre-
sented by Siek [12], aim to remove dynamic type checks
by explicitly writing type hints to the compiler. Ocur-
rence typing, improved by Logical Types, used in Typed
Racket [14, 15], allows to infer more types and prevents
the programmer from explicitly writing certain types.
However, by letting the user explicitly write the type
information, these approaches impact the simplicity of
the language which is one of the main advantages of
dynamically typed languages.

Other work attempts to remove type checks using
code duplication. The well-known technique of Trace
Compilation is often used in compilers to remove type
checks [9]. Trace Compilation aims to specialize specific
parts of the program according to the information gath-
ered from profiling. But this technique requires the use
of an interpreter to profile code and to record traces.
Chang et al. presented a technique using Trace Com-
pilation based on the observation of the actual types
of variables at runtime to specialize code according to
this information [2]. However this approach implies the
compilation to a statically typed intermediate repre-

sentation. In contrast with trace based techniques, Ex-
tremely Lazy Compilation aims to simplify the compi-
lation process by using only a JIT compiler without any
intermediate representation.

Finally, Bolz et al. presented a simple Scheme im-
plementation based on Meta Tracing [1]. Because this
simplicity is close to our goal to simplify the compilation
process, it could be interesting to compare performance
between both implementations.

8. Future work
First, we would like to improve the interprocedural
propagation of context by keeping the type of returned
values. As explained in section 6, CPS conversion is
a good starting point to explore the effects on the
generated code.

Another work should be to improve our implemen-
tation to better evaluate performance of the technique.
A short term goal is to implement others data types
such as flonum which we think to be responsible for
more polymorphic data. Then we should reanalyze the
space needed by external tables as well as the impact
of changing the maximum number of versions on the
number of type checks removed.

Another improvement should be to consider register
allocation in our implementation, first to explore the
integration of register allocation information into the
context and to be able to evaluate the technique by
comparing performance with state of the art Scheme
JIT compilers such as Racket [8].

Finally, a future work is to explore some heuristics,
among those presented in section 4, to use in order
to reduce the memory footprint of the external tables
without adding expensive dynamic type checks.

32 Scheme and Functional Programming Workshop 2015

9. Conclusion
This paper presents the technique of extremely lazy
compilation which allows the compiler to discover the
type of variables from compilation and execution of pre-
vious code in the execution flow. According to this type
information, the compiler uses code versioning to gen-
erate specialized versions of the code to remove a lot of
type checks executed at runtime, even if a variable is
polymorphic. This paper also presents an interprocedu-
ral extension of code versioning allowing to propagate
the type information gathered from extremely lazy com-
pilation through function calls by specializing the entry
points using an external entry points table.

Our Scheme implementation shows that, in average,
more than 75% of type checks are removed but they
introduce two potential flaws. First, the external tables
impact the amount of memory used, but we showed this
amount stays low in practice. The other is an additional
cost due to the indirection used at call sites. But again,
we showed this cost is rapidly compensated.

Extremely lazy compilation and interprocedural
propagation can be improved especially by using CPS
or derived form to propagate the type of returned val-
ues using the same mechanism as the one used for entry
points. It would also be good to improve our current
implementation to be able to better evaluate perfor-
mances.

Because the techniques don’t need any intermediate
representation or expensive static analysis, they allow
to quickly implement a language with a simple JIT com-
piler with reasonable performance. Our current imple-
mentation is a good starting point to experiment on
code versioning for example with the integration of reg-
ister allocation information in compilation context.

References
[1] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt.

Meta-tracing makes a fast Racket. In Workshop on
Dynamic Languages and Applications, 2014.

[2] M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and
M. Franz. Efficient just-in-time execution of dynami-
cally typed languages via code specialization using pre-
cise runtime type inference. Technical report, Citeseer,
2007.

[3] M. Chevalier-Boisvert and M. Feeley. Simple and effec-
tive type check removal through lazy basic block ver-
sioning. In Proceedings of the 2015 European Conference
on Object-Oriented Programming (ECOOP). LIPIcs,
2015.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single as-
signment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[5] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 207–212. ACM, 1982.

[6] K. Driesen. Efficient Polymorphic Calls, volume 596.
Springer Science & Business Media, 2001.

[7] R. K. Dybvig. Three implementation models for
Scheme. PhD thesis, University of North Carolina at
Chapel Hill, 1987.

[8] M. Flatt and PLT. Reference: Racket. Techni-
cal Report PLT-TR-2010-1, PLT Design Inc., 2010.
http://racket-lang.org/tr1/.

[9] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, et al. Trace-based just-in-time type spe-
cialization for dynamic languages. In ACM Sigplan No-
tices, volume 44, pages 465–478. ACM, 2009.

[10] F. Henglein. Global tagging optimization by type in-
ference. ACM SIGPLAN Lisp Pointers, (1):205–215,
1992.

[11] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers:
Principles, techniques, and tools, 2006.

[12] J. G. Siek and W. Taha. Gradual typing for functional
languages. In Scheme and Functional Programming
Workshop, volume 6, pages 81–92, 2006.

[13] G. J. Sussman and G. L. Steele Jr. Scheme: A inter-
preter for extended lambda calculus. Higher-Order and
Symbolic Computation, 11(4):405–439, 1998.

[14] S. Tobin-Hochstadt and M. Felleisen. The design and
implementation of Typed Scheme. ACM SIGPLAN
Notices, 43(1):395–406, 2008.

[15] S. Tobin-Hochstadt and M. Felleisen. Logical types
for untyped languages. ACM SIGPLAN Notices, 45(9):
117–128, 2010.

33 Scheme and Functional Programming Workshop 2015

