
What can Scheme
learn from
JavaScript?
Scheme Workshop 2014

Andy Wingo

Me and Scheme
Guile co-maintainer since 2009

Publicly fumbling towards good Scheme
compilers at wingolog.org

Scheme rules everything around me

Me and JS
2011: JavaScriptCore (“JSC”, in Safari) dabbles
(failure, mostly)

2012-2013: V8 (Chrome): random little things,
generators, iteration

2013-2014: SpiderMonkey (Firefox):
generators, iteration, block scope

Currently V8 (destructuring binding)

(Very little JS coding though!)

Scheme precedes JS
Closures

Specification people (brendan, samth, dherman)

Implementors (e.g. Florian Loitsch, Maciej
Stachowiak)

Benchmarks (cross-compiled from Scheme!)

Practitioner language (e.g. continuations)

Scheme precedes JS
Hubris

Scheme precedes JS (?)
Hubris (?)

Scheme precedes JS (?)
Hubris (?)

How could JavaScript precede Scheme?

A brief history of JS
1996-2008: slow

2014: fastish

A brief history of JS
1996-2008: slow

2014: fastish

Environmental forcing functions

Visiting a page == installing an app

Cruel latency requirements

Why care about performance?
Expressiveness a function of speed (among
other parameters)

Will programmers express idiom x with more or
less abstraction?

60fps vs 1fps

Speed limits, expression limits
We sacrifice expressiveness and extensibility
when we write fast Scheme

Late binding vs. inlining❧

Mutable definitions vs. static linking❧

Top-level vs. nested definitions❧

Polymorphic combinators vs. bespoke
named let

❧

Generic vs. specific functions❧

We are our compilers’ proof assistants, and will
restrict the problem space if necessary

Lexical scope: the best thing
about Scheme
Precise, pervasive design principle

Scope == truth == proof

Happy relationship to speed

Big closed scopes == juicy chunks for an
optimizer to munch on

Lexical scope: the worst thing
about Scheme
Limit case of big closed scope: Stalin, the best
worst Scheme

We contort programs to make definitions
lexically apparent, to please our compilers

With Scheme implementations like JS
implementations we would write different
programs

JS: speed via dynamic proof
“Adaptive optimization”

A revival of compilation techniques pioneered
by Smalltalk, Self, Strongtalk, Java
expr ifTrue: block

Inlining key for performance: build sizable
proof term

JS contribution: low-latency adaptive
optimization (fast start)

All about the tiers
“Method JIT compilers”; Java’s HotSpot is
canonical comparison

The function is the unit of optimization

Other approaches discussed later; here we focus
on method JITs

All about the tiers
Conventional wisdom: V8 needs interpreter

V8 upgrading optimizing compiler

asm.js code can start in IonMonkey / Turbofan;
embedded static proof pipeline

Optimizing compiler awash in
information
Operand and result types

Free variable values

Global variable values

Sets of values: mono-, poly-, mega-morphic

Optimizations: An inventory
Inlining

Code motion: CSE, DCE, hoisting, sea-of-nodes

Specialization

Numeric: int32, uint32, float, ...❧

Object: Indexed slot access❧

String: Cons, packed, pinned, ...❧

Allocation optimization: scalar replacement,
sinking

Register allocation

Dynamic proof, dynamic
bailout
Compilation is proof-driven term specialization

Dynamic assertions: the future will be like the
past

Dynamic assertion failure causes proof
invalidation: abort (“bailout”) to baseline tier

Bailout enables static compilation techniques
(FTL)

What could Schemers do with
adaptive optimization?

Example: fmt
(fmt #f
 (maybe-slashified "foo"
 char-whitespace?
 #\"))
⇒ "foo"

Hesitation to use: lots of allocation and no
inlining

Compare: Dybvig doing static compilation of
format

Example: fmt
With adapative optimization there would be
much less hesitation

If formatting strings is hot, combinators will be
dynamically inlined

Closure allocations: gone

Indirect dispatch: gone

Inline string representation details

Example: Object orientation
CLOSsy or not, doesn’t matter
(define-generic head)
(define-method (head (obj <string>))
 (substring obj 0 1))
(head "hey")
⇒ "h"

Lots of indirect dispatch and runtime overhead

Example: Object orientation
If call site is hot, everything can get inlined

Much better than CLOS: optimization happens
at call-site, not at callee

(Inline caches)

Example: Dynamic linking
(define-module (queue)
 #:use-module (srfi srfi-9)
 #:export (head push pop null))

(define-record-type queue
 (push head tail)
 queue?
 (head head)
 (tail pop))

(define null #f)

Example: Dynamic linking
(define-module (foo)
 #:use-module (queue))
(define q (push 1 null))
...

Observable differences as to whether compiler
inlines push or not; can the user

re-load the queuemodule at run-time?❧

re-link separately compiled modules?❧

re-define the queue type?❧

Example: Dynamic linking
Adaptive optimization enables late binding

Minimal performance penalty for value-level
exports

Example: Manual inlining
(define-syntax define-effects
 (lambda (x)
 (syntax-case x ()
 ((_ all name ...)
 (with-syntax (((n ...) (iota (length #'(name ...)))))
 #'(begin
 (define-syntax name
 (identifier-syntax (ash 1 (* n 2))))
 ...
 (define-syntax all
 (identifier-syntax (logior name ...)))))))))

(define-effects &all-effects
 &mutable-lexical
 &toplevel
 &fluid
 ...)

Stockholm syndrome!

Example: Arithmetic
Generic or specific?

fl+ or fx+?

Adaptive optimizations lets library authors
focus on the algorithms and let the user and the
compiler handle representation

Example: Data abstraction
http://mid.gmane.org/
20111022000312.228558C0903@voluntocracy.org

However, it would be better to abstract
this:
(define (term-variable x) (car x))
(define (term-coefficient x) (cdr x))

That would run slower in interpreters. We
can do better by remembering that Scheme
has first-class procedures:
(define term-variable car)
(define term-coefficient cdr)

Example: Data abstraction
Implementation limitations urges programmer
to break data abstraction

Dynamic inlining removes these limitations,
promotes better programs

Example: DRY Containers
Clojure’s iteration protocol versus map, vector-
map, stream-map, etc

Generic array traversal procedures (array-ref
et al) or specific (vector-ref, bytevector-u8-
ref, etc)?

Adaptive optimization promotes generic
programming

Standard containers can efficiently have
multiple implementations: packed vectors, cons
strings

Example: Other applicables
Clojure containers are often applicable:
(define v '#(a b c))
(v 1) ⇒ b

Adaptive optimization makes different kinds of
applicables efficient

Example: Open-coding
(define (inc x) (1+ x))
(define + -)
(inc 1) ⇒ ?

Example: Debugging
JS programmers expect inlining...

...but also ability to break on any source location

Example: Debugging
Adaptive optimization allows the system to go
fast, while also supporting debugging in
production

Hölzle’s “dynamic de-optimization”: tiering
down

Caveats

Caveats
There are many

Method JITs: the one true way?
Tracing JITs

Higgs (https://github.com/maximecb/
Higgs, experiment)

❧

TraceMonkey (SpiderMonkey; failure)❧

PyPy (mostly for Python; success?)❧

LuaJIT (Lua; success)❧

Use existing VM?
Pycket: Implementation of Racket on top of
PyPy (http://www.ccs.neu.edu/home/samth/
pycket-draft.pdf)

Graal: Interpreter-based language
implementation (“One VM to rule them all”,
Würthinger et al 2013)

Engineering effort
JS implementations: heaps of C++, blah

To self-host Scheme, decent AOT compiler also
needed to avoid latency penalty (?)

No production self-hosted adaptive optimizers (?)

Polymorphism in combinators
Have to do two-level inlining for anything good
to happen
(fold (lambda (a b) (+ a b)) 0 l)
⇒ (let lp ((l l) (seed 0))
 (if (null? l) seed
 (lp (cdr l)
 ((lambda (+ a b) (+ a b))
 (car l)
 seed))))
⇒ (let lp ((l l) (seed 0))
 (if (null? l) seed
 (lp (cdr l) (+ (car l) seed))))

Polymorphism in combinators
Polymorphism of call-site in fold challenging
until fold is inlined into caller

Challenging to HotSpot with Java lambdas

Challenging to JS (Array.prototype.foreach;
note SM call-site cloning hack)

Lack of global visibility
JIT compilation not a panacea

Some optimizations hard to do locally

Contification❧

Stream fusion❧

Closure optimization❧

Tracing mitigates but doesn’t solve these issues

Latency, compiled files, macros
One key JS latency hack: lazy parsing/codegen

Scheme still needs an AOT pass to expand
macros

Redefinition not a problem in JS; all values on
same meta-level

JS doesn’t have object files; does Scheme need
them?

Tail calls versus method jits
JS, Java don’t do tail calls (yet); how does this
relate to dynamic inlining and method-at-a-
time compilation?

How does it relate to contification, loop
detection, on-stack replacement?

Pycket embeds CEK interpreter; loop detection
tricky

Things best left unstolen
undefined, non-existent property access, sloppy
mode, UTF-16, coercion, monkey-patching (or
yes?), with, big gnarly C++ runtimes, curly
braces, concurrency,

Next steps?
For Guile:

Native self-hosted compiler❧

Add inline caches with type feedback cells❧

Add IR to separate ELF sections❧

Start to experiment with concurrent
recompilation and bailout

❧

For your scheme? Build-your-own or try to
reuse Graal/HotSpot, PyPy, ...?

For users
Dance like no one is watching

Write lovely Scheme!

For implementors
Steal like no one is watching

Add adaptive optimization to your Schemes!

Thanks
wingo@pobox.com

wingo@igalia.com

http://wingolog.org/

@andywingo

