

Large Scheme: A Personal View

John Cowan
<cowan@ccil.org>

Scheme 2014

Recap of R7RS-small

 Based on R5RS, but with many R6RS
changes

 Case-sensitive, like many implementations
 String and character escapes
 Datum and block comments
 Datum labels
 #true and #false

Recap of R7RS-small

 R6RS-style libraries; R5RS refactored
 R6RS exception handling (but not conditions)
 letrec*
 define-values, let-values, letrec-
values

 define-record-type from SRFI 9
 Dynamically bound parameters like SRFI 39

Recap of R7RS-small

 Numeric extensions, including optional
IEEE floats

 Revised integer division routines
 Unicode semantics (but a subset is allowed)
 String comparison no longer lexicographic
 String and vector procedures matching list

procedures (with start and end arguments)

Recap of R7RS-small

 Bytevectors
 Binary and textual ports
 String and bytevector ports
 Environment variables, command line, and

exit status
 Time of day and run time
 Various other points

Basic WG2 process

 Proposals are put on the wiki
 When ready, the SRFI process is used to

develop and evaluate them

– Posted on the SRFI site
– Discussed on the SRFI-specific mailing list
– A sample implementation is required

• Preferably a portable one
 The WG votes on adding them to R7RS-large

Existing implementations

 Chibi (small, embedded)
 Chicken (R5RS/R7RS; fast compiler to C)
 Foment (compiler and interpreter)
 Gauche (script interpreter)
 Kawa (JVM-based)
 Owl Lisp (pure functional subset)
 Picrin (lightweight interpreter)
 Sagittarius (R6RS/R7RS)

What follows is a personal view

 Not based on Working Group votes

 Unless otherwise noted
 The WG has an indefinite membership

 If you cast a vote on the mailing list,
you're in

 A majority of votes cast carries a motion
 I expect people will drop in and out

Release structure

 There will be rolling releases

 Waiting till it's done would be frustrating
 Each release will build on the last

 Infrared Edition: Overview of Scheme (done)
 Red Edition: Data structure libraries
 …?
 Ultraviolet Edition: Complete (but out of

sight)

The Red Edition

 List library (SRFI 1; unanimous consent)
 String library (string slices and positions,

plus parts of SRFI 13)
 Vector library (enhanced SRFI 43)
 Sorting vectors and lists (SRFI 32 revised)
 Comparators (SRFI 114)

The Red Edition

 Boxes (SRFI 111; already voted in)
 Sets and bags (SRFI 113), integer sets,

character sets (SRFI 14)
 Mutable queues
 Immutable deques, sets, maps
 Immutable pairs and lists (SRFI 116)
 Enumerations and their sets and maps

The Red Edition

 Hash tables and bimaps
 Generators (Gauche) or streams (SRFI 41)
 Lazy sequences
 Immutable cyclic lists
 Run-time records (SRFI 99)

The Red Edition — Maybe

 Multi-dimensional general arrays
 Sparse vectors and maps
 Ternary search trees
 Ephemerons and weak hashtables

(optional)

Typical procedures

 Constructors: make-foo, foo, foo-unfold
 Predicates: foo?, -contains?, -empty?
 Selectors: -ref, -take, -drop, -split-at
 Mutators: -adjoin!, s-set!, -delete!, -search!
 The whole foo: -length, -append,

-concatenate, -reverse, -count, -copy, -zip,
-unzip, foo->list, list->foo

Typical procedures

 Fold & map: -map, -for-each, -reduce
 Delete: -delete, -delete-dups
 Filter & partition: -filter, -remove, -partition
 Search: -find, -any, -every, -take-while,

-drop-while
 Comparison: foo=?, foo<?, foo>?

Possible future editions

 Orange Edition: numerical libraries
 Yellow Edition: I/O
 Green Edition: syntax enhancements
 Blue Edition: ???
 ???

Stand-alone issues

 Require full numeric tower?

– WG voted yes
• Except for exact complex numbers

 Require full Unicode repertoire?

– Maybe except NUL in strings
 Which R7RS-small libraries to require?
 Require multiple inexact-number precisions?

s

Help!

 I can handle the overall process
 I can handle spec design if I have to

– At worst, the whole thing will reflect my own
prejudices

– At best, it will be nicely consistent
 Writing the implementations is another story

– Alex Shinn wrote Chibi Scheme during WG1
– I'm not sure I can write all the WG2 code
– Volunteers needed and welcome!

Where

<http://trac.sacrideo.us/wg/wiki/WG2Dockets>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

