
Little Languages for Relational Programming

Daniel W. Brady Jason Hemann Daniel P. Friedman
Indiana University

{dabrady,jhemann,dfried}@indiana.edu

Abstract
The miniKanren relational programming language, though
designed and used as a language with which to teach re-
lational programming, can be immensely frustrating when
it comes to debugging programs, especially when the pro-
grammer is a novice. In order to address the varying levels
of programmer sophistication, we introduce a suite of dif-
ferent language levels. We introduce the first of these lan-
guages, and provide experimental results that demonstrate
its effectiveness in helping beginning programmers discover
and prevent mistakes. The source to these languages is found
at https://github.com/dabrady/LittleLogicLangs.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Applicative (functional) languages, Con-
straint and logic languages; D.2.5 [Testing and Debug-
ging]: Debugging aids

Keywords miniKanren, microKanren, Racket, Scheme, re-
lational programming, logic programming, macros

1. Introduction
miniKanren is a family of embedded domain-specific lan-
guage for relational (logic) programming with over 40 im-
plementations in at least 15 different languages, including
ones in Clojure, Haskell, Ruby, and C#. Much of the cur-
rent development, however, is carried out in Scheme, Clo-
jure, and Racket (see http://minikanren.org).

In addition to the industrial [3, 13, 18] and academic [1,
4, 17, 20] uses, miniKanren has also been used as a teaching
language. It has been successfully used to introduce students
to logic programming, both through the textbook The Rea-
soned Schemer [11] and as a part of the curriculum in In-
diana University Bloomington’s undergraduate and graduate
programming languages courses [10].

The relational programming paradigm differs signifi-
cantly from functional or imperative programming, and is
difficult for beginning students. With miniKanren program-
ming, this holds even for students already familiar with the
embedding language (e.g. Scheme, Racket).

Debugging miniKanren programs is frequently one of the
most frustrating aspects for new programmers. Debugging
is a difficult problem in programming generally, and can be

time consuming and tedious. Debugging miniKanren carries
additional challenges above those of many other languages.
miniKanren is implemented as a shallow embedding, and
historically its implementations have been designed to be
concise artifacts of study rather than featureful and well-
forged tools. As a result, implementers have given little at-
tention to providing useful and readable error messages to
the user at the level of their program. What error handling
there is, then, is that provided by default with the host lan-
guage. This has the negative impact of, in the reporting of
errors, communicating details of the miniKanren implemen-
tation with the user’s program. This is a problem common to
many shallow embedded DSLs [12].

This can leave the programmer truly perplexed. What
should be syntax errors in the embedded language are in-
stead presented as run-time errors in the embedding lan-
guage. This makes bugs more difficult to track down. Run-
time errors may manifest some distance from the actual
source of the error. A poor error message can cause a pro-
grammer to look for bugs far from the actual source of the
problem, and perhaps accidentally break correct code in a
misguided attempt to fix the problem. Moreover, the mixing
of miniKanren implementation and user program means that
often the user must have some knowledge of the miniKanren
implementation to understand the reported error.

The promise of domain-specific languages [2] is that we
can more quickly map a solution to code in a language
specifically tailored to the problem than in a more general-
purpose language. As it stands in miniKanren, the user is
forced back to thinking in a general-purpose language when
an error arises, precisely when a domain-specific language
would be most useful. miniKanren presents an additional
complication, though: miniKanren is designed specifically
to be a DSL in which the programmer does have access to
the entirety1 of the host language.

While a programmer will most often only use the prim-
itives defined in miniKanren itself, the language allows her
access to non-miniKanren code of the host language. This
is an intended feature of miniKanren, and does have its
uses on occasion (e.g. build-num from the relational arith-

1 Except vectors, which are used in the implementation and of necessity
should not be used by the programmer as miniKanren terms.

https://github.com/dabrady/LittleLogicLangs
http://minikanren.org/


metic suite). So syntactically restricting the programmer to
miniKanren primitives is not a sufficient solution.

It is, however, unfortunate to allow this specialized lan-
guage feature to make miniKanren programming across-the-
board so much more difficult, when programmers, especially
beginning ones, will often only use the primitives defined in
the miniKanren language in their programs. Our solution is
to abandon a one-size-fits-all approach, and instead embrace
a suite of different language levels [9] of increasing sophisti-
cation and freedom that come with additional burdens on the
programmer. We propose a small series of little languages
organized into a tiered system that provides the program-
mer with development environments of varying degrees of
restriction for writing miniKanren relations. Towards these
ends we have made significant progress, laying much of the
groundwork for the tasks to come (outlined in section 7).

Our paper makes the following contributions:

• We propose a series of languages meant to teach rela-
tional programming where each successive programming
language exposes more of the complexities of miniKan-
ren by allowing more of the embedding language.

• We present the first language in this series, a very re-
stricted miniKanren implementation with a suite of syn-
tax macros designed to give the programmer precise and
descriptive error messages when writing relational pro-
grams.

• We discuss design details for the second language in
this proposed series. It is a language that is meant to be
transitionary, extending the first language level in ways
that facilitate the acquisition of skills the programmer
may find useful when working in the increasingly freer
environments of the tiers above.

• We also present the last little languages of this series:
two implementations of the full miniKanren language,
one minimally restricted and the other completely free
of restrictions.

• We demonstrate the variety of errors these macros pre-
vent and provide experimental evidence showing how
they can be used to the advantage of beginning and sea-
soned logic programmers alike.

We begin by offering a brief refresher on the miniKanren
language. Then, we present a situation that is representative
of the kinds of debugging a miniKanren programmer of
any skill level is likely to encounter and that proves rather
unfriendly to new students.

2. The miniKanren language
Here, we briefly recapitulate the operators and operations
of miniKanren. We begin by describing the operators, and
conclude with an example of their usage. A more thorough
introduction to miniKanren can be found in The Reasoned
Schemer [11].

A miniKanren program is a goal. A goal is run in an
initial, empty state, and the result is formatted and presented
to the user. A goal is a function that takes a state and returns
a stream (a somewhat lazily-evaluated list) of answers. This
goal may be the combination of several subgoals, either their
conjunction or disjunction. In the pure subset of the original
miniKanren, we have one atomic goal constructor, ≡ . A
goal constructor such as ≡ takes arguments, in this instance
two terms u and v, and returns a goal. Applying that goal
to a given state returns a stream, possibly empty. The goal
constructed from ≡ succeeds when the two terms u and v
unify, that is, when they can be made syntactically equal
relative to a binding of free variables.

Our implementation of miniKanren also includes dise-
quality constraints, introduced with the miniKanren opera-
tor 6= . Disequality constraints are in some sense a converse
of goals constructed with ≡ . In a given state, a disequality
constraint between two terms u and v fails if, after making u
and v syntactically equal, the state has not changed. Other-
wise, the disequality constraint succeeds, but if another, later
goal causes them to become syntactically equal, failure will
result.

Individual goals constructed with ≡ and 6= are in and
of themselves only so useful. To write more interesting pro-
grams, we need a mechanism by which we can build the con-
junction and disjunction of goals. The operator that allows us
to build these more complex goals is conde. conde takes as
arguments a sequence of clauses. A clause is a sequence of
goal expressions, and for the execution of a conde clause to
succeed the conjunction of all of its goals must succeed. The
clauses of the conde are executed as a nondeterministic dis-
junction; for the conde to succeed, at least one of its clauses
must succeed. A conde expression evaluates to a goal that
can succeed or fail.

Often, when executing a miniKanren program, we need to
introduce auxiliary logic variables. The miniKanren opera-
tor fresh allows us to do this. fresh takes a list of variable
names, and a sequence of goal expressions; new variables
with those names are introduced and lexically scoped over
the conjunction of the goals. Like conde, a fresh expres-
sion evaluates to a goal that can succeed or fail.

Because miniKanren is an embedded DSL, we utilize the
host language’s ability to define and invoke (recursive) func-
tions to build goal constructors and invoke (recursive) goals.
Goals constructed from these user-defined goal construc-
tors can be used wherever goals created from the primitive
miniKanren operators can be used.

Finally, we use run to execute a miniKanren program.
run takes a maximal number n of desired answers, a variable
name, typically q, and a sequence of goal expressions. A new
variable is lexically scoped to the name q; this is the variable
with respect to which the final answers will be presented.
The program to be executed is taken as the goal that is the
conjunction of the goal expressions provided to run. The



run* operator is similar to run, except that instead of a
maximal number of answers, we request all of the answers.2

Consider the following miniKanren program and it’s ex-
ecution:
> (de�ne (no-tago tag l )

(conde
((≡ ' () l ))
((fresh (a d)

(≡ `(, a . , d) l )
( 6= a tag)
(no-tago tag d)))))

> (run 2 (q)
(fresh (x y)
(≡ `(, x , y) q)
(no-tago x `(a , y b))))

(((_.0 _.1) ( 6= ((_.0 _.1)) ((_.0 a)) ((_.0 b)))))

The Racket program no-tago is a user-defined goal con-
structor; it takes two arguments and returns a goal. This is a
conde with two clauses. The first clause consists of a single
goal, the requirement that l be '(). The second clause too
consists of a single goal. This goal is created from fresh; it
requires that two new variables a and d be introduced, and
that three things then be the case: that l decompose into two
parts a and d, that a not be equal to tag, and that no-tago
hold over tag and d.

In the invocation of this program we ask run for at most
two answers, with respect to some variable q. The program
itself is a single goal that is the result of a fresh. We freshen
two new variables x and y, and require two things be the
case: that q be the same as a list of x and y, and that no-tago
hold of x and the list `(a ,y b). There is in fact only
one result to this query. The result is a list containing both
the final answer, and a list of the disequality constraints on
the answer. The answer itself is a representation of the list
(x y); since x and y remain fresh in the final answer, they
are printed in miniKanren’s representation of fresh variables.
Fresh variables in miniKanren are represented as _.n, for
a zero-based integer index n. The list of disequality con-
straints ensures that variable x be distinct from variable y,
and from symbols 'a and 'b.

With these operators, we are equipped to implement rela-
tively complicated miniKanren programs. The canonical im-
plementation adds impure operators for committed-choice
and “if-then-else” behavior, as well as debugging printing
operators. Other implementations add more sophisticated
run primitives and additional constraints.

3. The problem at present
Suppose one is writing a relation to generate the infinite
set of natural numbers as defined by the Peano axioms.
Peano numbers are a simple way of representing the natural
numbers using only a zero value and a successor function;

2 In the case of an infinite stream of answers, the execution will appear to
hang, and must be aborted. But here’s the rub: how does one determine if a
program has produced an infinite stream of answers, or merely an obscenely
large one?

here, 'z represents the number zero, '(s . z) the number
one, '(s s . z) the number two, and so on. We would
hope that when running peano for 9 answers, we would get
an output similar to that below.

> (run 9 (q) (peano q))
' (z
(s . z)
(s s . z)
(s s s . z)
(s s s s . z)
(s s s s s . z)
(s s s s s s . z)
(s s s s s s s . z)
(s s s s s s s s . z))

Upon opening up a Racket REPL and loading up miniKan-
ren, we flesh out our definition of peano:

> (de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(= `(s . , n-) n)
(peano n-))))))

Since Racket accepts this definition, we can use it to try
and execute the program.

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:596:24: application: not a procedure;
expected a procedure that can be applied to arguments
given: ' z
arguments. . . :
' (((#(q) #(q))) () () () () ())

This error message is not very helpful. Intriguing, though,
is its reported source: mk.scm. This error is not reported
as coming directly from any code we’ve written, but rather
from the implementation of miniKanren itself: it is a Racket-
level exception, though caused by miniKanren code. Since
it is unlikely that the code we just wrote somehow broke
our miniKanren implementation, we can assume that the
real source of the bug is in our definition of peano. Taking
another look at our implementation, we discover what we
believe to be the ‘true’ source of the error:

(de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(= `(s . , n-) n)
(peano n-))))))

We were erroneously using Racket’s equality operator =
instead of the miniKanren unification operator ≡ ; this typo
is a common mistake. Correcting the issue should give us a
working definition of peano:



> (de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:596:24: application: not a procedure;
expected a procedure that can be applied to arguments
given: ' z
arguments. . . :
' (((#(q) #(q))) () () () () ())

. . . but it doesn’t. That is the same error: did we not just
fix the problem? Apparently, the problem we fixed, while
certainly a bug, is not the root of this particular error. So,
since the error message certainly doesn’t help us, we need to
scrutinize our code a bit more. Where is the issue, here?
(de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

Aha! In the definition of our relation we used cond, not
the miniKanren primitive conde. This is another common
error, but hopefully now our debugging is complete.
> (de�ne peano

(λ (n)
(conde
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:653:18: ≡: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 1
arguments. . . :
' (((#(q) #(q))) () () () () ())

This time, we at least get a different error message. Not a
particularly helpful one, we admit: we’re still seeing Racket-
level exceptions filtering up through the DSL. This is a frus-
trating and tiring experience for the uninitiated, and irksome,
at the very least, to a relational programming expert. We
push forward, and unmask what will turn out to be the fi-
nal bug in this bit of code:
(de�ne peano
(λ (n)
(conde
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

The conde form takes a sequence of goal sequences, but
what was intended to be the first sequence is merely a single

goal expression: it is missing a set of parentheses. Paren-
thesis mistakes such as these are also a frequent source of
errors in miniKanren programming, as in Racket program-
ming generally. These are especially troublesome when they
pass compilation and manifest only at run-time. After cor-
recting this, our relation can now, at last, generate results.
> (de�ne peano

(λ (n)
(conde
((≡ ' z n))
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
' (z
(s . z)
(s s . z)
(s s s . z)
(s s s s . z)
(s s s s s . z)
(s s s s s s . z)
(s s s s s s s . z)
(s s s s s s s s . z))

The exceptions we have seen thus far have been thrown
by Racket from the code that the miniKanren DSL is gen-
erating, not by any code expressly written by the user.
Racket is left to interpret both our miniKanren code and
the miniKanren implementation as a single Racket program.
This, to a certain extent, undermines the purpose of a DSL.

Ideally, our miniKanren implementation will check for
syntax mistakes like the foregoing when a program is de-
fined. miniKanren users should not be confronted with host-
level exceptions when writing or executing their relations.
As it stands, miniKanren implementations do not check for
such things, and there is nothing syntactically wrong as far as
Racket, the host language, is concerned. Therefore, the code
generated by miniKanren compiles, and mistakes such as
these slip through to run-time, where our program’s source
and the miniKanren implementation are blended together in
Racket.

4. Our approach
We see great potential in a system that provides the user with
control over how much non-relational code their programs
can contain. The purest of miniKanren environments would
completely disallow non-relational pieces of code, while at
the other end of the spectrum a boundless miniKanren would
embrace the blending of functional and relational constructs.

Such a safety system would have other benefits, as well:
a strict programming environment would not only help the
user in the creation of valid relational programs, but could
also be used to aid the mechanical transformation process
of Racket code to miniKanren relations. As the user grows
more comfortable with the relational style of programming,
she may choose to give herself more non-relational freedom
by removing the training wheels, so to speak, and switching
to a less restricted environment.



We envision this safety system as a series of language lev-
els having four tiers. The first three tiers are packaged with
a standard library of miniKanren relations that is expanded
and restricted at various levels.

• At the lowest level sits the purest miniKanren environ-
ment (section 5.2): no non-relational code allowed, but
the library provides convenience functions (e.g. conso,
caro) to help the user prepare for short-hand notations
(e.g. quasiquote syntax) that are prohibited at this level.
All definitions must reduce to either literals, goals, or re-
lations.

• One tier higher (section 7.1), the environment is now
slightly tolerant of non-relational code, and adds a suite
of pure arithmetic relations [16] to the standard library,
allowing the user to work with numbers in a purely re-
lational manner for the first time. The programmer now
has the ability to use the more advanced, short-hand no-
tations for relations like conso; namely, those which re-
quire quasiquote.

• The next tier, described in section 5.1, allows the user to
intermingle Racket code with miniKanren code, at their
own risk. With non-relational code comes non-relational
definitions, increased complexity, and the potential for
insidious bugs due to a less-restrictive environment.

• The final tier (also in section 5.1), the highest and freest
level, holds bare-bones miniKanren: all code allowed ev-
erywhere and no miniKanren-specific syntax checking
enforced. Users must rely solely on host-level error han-
dling. (This is the current state of miniKanren.) The stan-
dard library is still available, and has grown to include a
variety of more sophisticated, powerful relations.

We have reimplemented miniKanren as a Racket lan-
guage, utilizing Racket’s excellent language definition facil-
ities. Using this implementation, we reduce the process of
working with this DSL to a single require statement:

Welcome to DrRacket, version 6.1 [3m].
Language: miniKanren; memory limit: 128 MB.

> (require miniKanren)
> (de�ne succeed (≡ #f #f))
> (run 1 (q) succeed)
' (_.0)

This version of miniKanren is completely bare-bones: no
syntax checking has been provided.

It is also possible to declare miniKanren as the chosen
language for a Racket file:

; ; in aFile.rkt
#lang miniKanren
(de�ne succeed (≡ #f #f))

Welcome to DrRacket, version 6.1 [3m].
Language: miniKanren; memory limit: 128 MB.

> (run 1 (q) succeed)
' (_.0)

In addition, we provide an implementation of miniKanren
with a microKanren core [14], located in the miniKanren/micro
collection. This language comes with a minimal amount
of syntax macros sitting between the user and the imple-
mentation, macros that take advantage of Racket’s powerful
syntax-parse macro system [6].

For example, the system catches the missing set of paren-
theses from the conde situation visited above, rejecting it as
invalid syntax:
> (require miniKanren/micro)
> (de�ne peano

(λ (n)
(conde
(≡ n ' z)
((fresh (n-)

(≡ n `(s . , n-))
(peano n-))))))

ERROR ⇒ conde: expected a goal expression
parsing context:
while parsing a sequence of goals in: ≡

In the following section, we provide details on the two
modular implementations of miniKanren and our implemen-
tation of the lowest language level, a little language dubbed
freshman.

These implementations are built as Racket language mod-
ules, meaning the user can simply type
#lang language-level

and begin programming in the specified language level. The
language can also be loaded into a Racket file using a stan-
dard require statement.

5. Implementation
Modularizing the miniKanren embedded DSL was facili-
tated by the design of Racket’s language model. In this
model, syntax parsing is divided into two discrete layers: the
reader layer, which turns a sequence of characters into lists,
symbols, and other constants; and the expander layer, which
processes those lists, symbols, and other constants to parse
them as an expression. In effect, this division of labor makes
defining a language at the expander layer of syntax parsing,
while simultaneously sharing the reader layer of Racket, a
relatively simple matter.

The modules we present are just such languages; they
utilize the Racket reader while providing additional rules
for parsing syntax at the expander layer. In this way, our
little languages take full advantage of the system created by
the developers of Racket, and with minimal effort provide
suitable extensions or restrictions to that system.

At the root of our macro system is a set of miniKanren-
specific syntax classes. These classes describe what it means
to be an artifact of the miniKanren language (e.g. a goal-
expr, a relation, etc.), and, along with the astonishing power



of syntax-parse, are directly responsible for the simplicity
and extensibility of our system. For more on syntax classes,
see "Fortifying Macros" by Culpepper and Felleisen. [6]

We provide the following syntax classes to be used to
enforce syntax-checking of miniKanren artifacts:

• goal-expr—A goal-expression is an expression that re-
duces to a goal.

• goal-cons—A goal-constructor is a function of one or
more arguments that returns a goal.

• goal-seq—A goal-sequence is a sequence of goals to
be evaluated.

• relation—A relation, for our purposes, is a function of
one or more arguments whose body reduces either to a
goal or another relation.

To demonstrate their use, take the following definition of
the fresh form from the microKanren kernel:

(de�ne- syntax fresh
(syntax- rules ()
((_ () g0 g* . . . ) (conj+ g0 g* . . . ))
((_ (x0 x* . . . ) g0 g* . . . )
(call/fresh
(λ (x0)
(fresh (x* . . . ) g0 g* . . . ))))))

Imposing the miniKanren syntax-checking on fresh is
as simple as converting it to syntax-parse notation and
utilizing the provided miniKanren syntax classes appropri-
ately:

(de�ne- syntax (fresh stx )
(syntax- parse stx
((_ () g0:goal- expr g*:goal- expr . . . ) #'(conj+ g0 g* . . . ))
((_ (x0:id x*:id . . . ) g0:goal- expr g*:goal- expr . . . )
#'(call/fresh

(λ (x0)
(fresh (x* . . . ) g0 g* . . . ))))))

The remainder of this section is dedicated to describing
in detail the various languages we currently provide in our
miniKanren relational development environment.

5.1 Collection: miniKanren
This collection provides a pair of top-level miniKanren im-
plementations: a module-based implementation of miniKan-
ren, as described by Friedman et. al. in The Reasoned
Schemer [11]; and a miniKanren with a minimal functional
core, described in full detail by Hemann and Friedman in
their 2013 Scheme Workshop paper [14].

The miniKanren collection is itself a language—it is the
first module-based implementation in the above list. In ad-
dition to the relational features of the canonical miniKan-
ren implementation, it also provides disequality constraints.
The inclusion of such constraints in our language levels is
currently being discussed and may change in future work.
This implementation has been designed to run in both Chez
Scheme and Racket; it is implemented as a thin layer of a

handful of Racket function aliases atop the Scheme imple-
mentation.

In this collection, the micro module provides a version
of miniKanren with a microKanren core. On top of the core
is a layer of usage macros that provides the familiar interface
and behavior of miniKanren. An end user could in principle
program directly in the language of the microKanren core,
however the language is too low-level to be practical for
many real programs.

This language has also been supplemented with a small
selection of syntax macros specifically designed for use with
the miniKanren DSL. These macros do not remove the pro-
grammer’s ability to intermingle functional and relational
code (e.g. cond is a valid construct), but they do, how-
ever, restrict the programmer’s ability to use functional code
within such relational constructs like conde and fresh. Be-
cause the syntax classes are attached to the miniKanren code
constructs themselves, the syntax-checking is only applied
to the bodies of those constructs.

5.2 Collection: mk
This collection houses our tiered set of language levels. Each
level is a restricted (and sometimes an extended) version of
a miniKanren with a microKanren kernel. The miniKanren
root implementation is functionally equivalent to the one
provided by the miniKanren/micro collection; however,
this one is written entirely in Racket and has no Scheme
dependencies.

Unlike with the miniKanren collection, this collection
does not double as a language module itself; one cannot
simply require mk or use mk as their #lang language as
they could with miniKanren: they must choose a language
module contained within this collection.

This collection houses the lowest little language in our
level system: freshman. Like the top-level miniKanren im-
plementations, it has been implemented as a Racket module
that can be used via #lang or require.

freshman is designed to be a purely relational miniKan-
ren, in which all user-defined functions must be relations,
and all definitions must reduce to either a relation or lit-
eral value (excluding a function); top-level goals are dis-
allowed. The standard define now introduces bindings
strictly for literals; freshman introduces a new special form,
define-relation, with which to define relations.

> (require mk/freshman)
> (de�ne non-relation ' literal )
> (de�ne-relation the- answer 42)
ERROR ⇒ de�ne-relation: expected a relation of one or more
arguments in: 42

> (de�ne-relation not-the- answer (λ (x) x))
ERROR ⇒ de�ne-relation: expected a goal- expression or
expected a relation of one or more arguments
parsing context:
while parsing a relation of one or more arguments in: X

> (de�ne-relation the- real - answer (λ (x) (≡ x 42)))
>



This relational purity only goes so deep: currently, no
method is in place for keeping functional code from being
used in the place of arguments to relations. For example, the
expression (conso (lambda (x) x) foo bar) is valid
in freshman. The reason for this is the pattern used for
parsing goals (defined in mk/lib/mk-stx.rkt):
(de�ne- syntax- class goal- expr
#:description "a goal- expression "
(pattern (p:goal - cons y:expr . . .+)))

Restrictions are currently placed only on the operator; the
arguments can be any valid Racket expression. In future
work we plan to further flesh out the faculties needed to fully
enforce a purely relational environment.

All relations must begin with either a fresh or a conde,
and we enforce the convention that the relation identifier
end in the letter ‘o’. If a relation is defined that does not
follow convention, an exception is thrown that suggests an
alternative identifier that does adhere to convention.
> (de�ne relation (≡ #f #t))
> (de�ne relation

(λ (x)
(fresh (y)
(≡ x y))))

ERROR ⇒ de�ne: relation identi�er must end in - o,
suggested change: relation - > relationo in:
(de�ne relation (λ (x) (fresh (y) (≡ x y))))

This identifier convention is enforced only on relations;
definitions that reduce merely to goals are exempt from
scrutiny.

freshman relations must also have at least one argument;
side-effects are not allowed at this level, and without them a
nullary relation would be utterly useless.

5.3 Analysis and Results
In an effort to measure the effectiveness of the current state
of our system, we took a semester’s worth of miniKanren
code written by Indiana University undergraduates last year
and ran it on the miniKanren/micro and mk/freshman

language levels of our system. There were 561 relations in
total that were fed to the system, divided among 84 stu-
dents. We collated the syntax errors generated at both the
minikanren/micro and mk/freshman levels, keeping a
count of the distinct exceptions caught, then analyzed the
data. The counts are shown in Table 1 below.

The left-column identifies the language level at which
the errors listed in the middle column occurred. The right-
most column contains a breakdown of the frequency of the
errors caught at each level. As you can see, freshman caught
the same types of errors as micro; however, it caught more
of them, and also caught a few new ones; these fall below
the horizontal line under the freshman section. In total,
the most restrictive language level caught nearly twice the
number of syntax errors as did the least restrictive language
level. The discrepancy in types of errors caught is due to
the variance in the restrictions placed on the user at each
language level.

Table 1. Error spread for the top-level miniKanren’s

Level Error Count

micro did you mean conde? 1
*X may not be a goal constructor 17

expected identifier 1
*expected a goal-expression 27

expected a goal-expression 4

Pure relation errors: 6
Blended relation errors: 44

Total errors: 50

freshman did you mean conde? 4
X may not be a goal constructor 23

*expected identifier 1
expected identifier 2

*expected a goal-expression 28
expected a goal-expression 4

define expected λ 18
relation id must end in -o 1

Pure relation errors: 10
Restricted relation errors: 71

Total errors: 81

We compared the errors reported by the syntax macros to
the reports generated by an autograder currently being used
to evaluate student miniKanren submissions at Indiana Uni-
versity. We found that the vast majority of the student code
that generated syntax errors also generated Racket-level ex-
ceptions when allowed to run in an unrestricted environment.
This suggests that many, if not all, such exceptions were
completely preventable given a proper programming envi-
ronment.

A few of the error categories highlight areas of the system
that need improvement. ‘X may not be a goal constructor’,
in particular, is thrown every place a goal-expr is expected
but a variable or other expression is given. The current algo-
rithm for determining if an expression evaluates to a goal is
very simple, and very dumb: if the operator identifier of the
expression does not end in -o, the goal-expr is rejected.
This check, of course, will always fail if there is no operator,
as in the case of a variable or some other value, regardless
of if it actually evaluates to a goal. Once a more intelligent
algorithm is developed, this error will only be reported when
a non-relational expression is given in place of an expected
goal-expr.

Relatedly, ’expected a goal-expression’ errors are thrown
when users attempt to use variables in the place of goal-exprs,
whether or not these variables actually refer to goals. The
reason, again, being goal-exprs lack of smarts: it has no
knowledge of which bindings in the current environment



point to goals (or, indeed, knowledge of any bindings at all);
and because there is currently no value difference between a
miniKanren goal and a standard Racket function (they both
evaluate to #<procedure>), it cannot perform any value
checking that would distinguish the two.

These issues are common to both miniKanren/micro

and freshman and are discussed at length in section 7.2.
Crunching the numbers a bit more, we find that 88 percent

of errors caught at the micro level were caused by ‘blended
relations’, that is, miniKanren relations that attempted to
utilize non-relational features of the host language. This
number is, however, severely bloated due to the issues with
how goal-expressions are identified, discussed above.

Attempted use of restricted features account for roughly
the same percentage of freshman errors; these restricted
features mainly include the usage of non-relational code (a
let statement, perhaps) and the ability to define top-level
goals. For example, if one were to try and define the canon-
ical succeed or fail relations, (define succeed (==

#f #f)) and (define fail (== #f #t)) respectively,
a ‘define expected λ’ exception would occur. Errors re-
sulting from the use of such restricted features are viewed
as evidence of the importance of proper programming en-
vironments and the benefits gained from using our fail-fast
system: miniKanren programmers are alerted of any syntax
mistakes or potential dangers as close to their source as pos-
sible.

Though no formal user study has been attempted to assess
what improvements our system make to the experience of
debugging miniKanren relations, in appendix A we provide
the output of a REPL session in which a severely broken and
blended miniKanren relation, member?o, is nursed back to
relational health by exclusively following the error messages
thrown by freshman.

6. Related Work
The microKanren kernel itself bears a strong relationship
to the kernel of Spivey and Seres’ “Embedding Prolog in
Haskell” [19], and to Oleg Kiselyov’s Sokuza Kanren [15].
Like microKanren, both of these works have a basic model
of conjunction, disjunction, introducing new logic variables,
and an operator to perform unification.

Our work here has been explicitly modeled on the Dr-
Racket model of teaching languages. We feel a strong anal-
ogy between the way the teaching languages of DrRacket aid
beginning students in writing functional programs and the
way these teaching languages aid the programmer in writing
relational programs [9]. It seems possible that their method
for introducing computer programming to students early in
their education might, with the appropriate languages, fea-
tures and guidance, help students learn relational program-
ming as well [8].

7. Conclusions and further work
Through the restrictions in this tiered series of little rela-
tional languages, we can provide to users of any skill level
more descriptive error messages to aid development. We
found that when programming at these levels, most run-time
errors encountered by novice programmers became instead
straightforward syntax errors.

From this experiment it is clear that many common mis-
takes made by miniKanren users are preventable, provided
they are made in an environment that can handle them. The
programmer can choose a language level that suits their re-
lational needs, depending on the types of functional free-
doms they wish to have in their programs. miniKanren ini-
tiates, who are presumably unfamiliar with either the rela-
tional programming paradigm or the syntax of miniKanren,
can make use of the tiered system in such a way that helps
them learn the language. Starting at the most restricted level,
freshman, they may choose to ‘level up’ as they become
more comfortable with writing miniKanren programs and
find themselves wanting to take advantage of the embedding
language features in order to write increasingly complex re-
lations.

The very act of writing this document brought to light
strengths, weaknesses, and potentialities that were hereto-
fore hidden from view, and many design decisions were
modified. This is a trend that will surely continue, as miniKan-
ren and its rapidly expanding community of relational pro-
grammers are still in their infancy. Below, we present our
vision for the ‘missing link‘, as it were, in our system of re-
lational language levels, as well as improvements and further
work to be done.

7.1 sophomore: Level up
Here we introduce the not-yet-implemented second little lan-
guage, sophomore. sophomore is intended to sit as a mid-
dle level between freshman and full miniKanren. We imag-
ine the sophomore DSL extending freshman in ways that
give the programmer more freedoms with the miniKanren
language, naturally increasing the range of legal relations
the programmer can write. The following design ideas rep-
resent our expectations as to what trade-offs sophomore

should make between safety and flexibility, though these
may change with discoveries as we implement and test our
designs.

The user is now granted a very limited ability to blend
functional and relational code in their programs: the pro-
grammer will have the ability to write non-relational code,
but only in a non-relational context. That is to say, functional
and relational pieces of code can coexist in the same pro-
gram, interacting with each other, but the programmer may
not use a non-relational construct like (map pred '(1 2 3))

inside of a relational one, like fresh or conde.
The standard library packaged with this level has been

augmented to include the relational arithmetic library. This



library provides a variety of numeric predicates and rela-
tions that perform such functions as basic mathematical op-
erations like addition and subtraction, in addition to more
involved arithmetic like logarithms and inequalities. These
relations operate on an encoding of little-endian binary num-
bers, which facilitates relational arithmetic.

In order to facilitate programming with this suite, the
standard library at this level also provides build-num, a
function that translates decimal numbers to little-endian bi-
nary numbers.

> (build- num 11)
' (1 1 0 1)
> pluso
#<procedure:pluso>
> (run 1 (q) (pluso (build - num 2) (build- num 9) q))
' ((1 1 0 1))

7.2 Improvements
There is one issue that has been uncovered during the course
of this experiment. It affects both the miniKanren/micro

and mk/freshman language levels, and has to do with the
types of expressions valid at each level.

Prior to running this experiment, freshman users were
unable to define top- level goals, such as succeed or
fail. This was discussed, and we decided this was the
desired behavior: top-level goals should be unavailable to
freshman users, as their main concern is with writing well-
formed relations. The discussion surrounding this issue,
however, brought to light another: the ‘purity guards’, if
you will, placed upon the conde and fresh forms only al-
low goal-exprs in their bodies, and fail to recognize when
a top-level variable was defined with a goal-expr.

In other words, freshman users cannot use variables in
the place of goal-exprs. Future versions of freshman will
somehow need to keep track of bound goals as they are
defined such that they can be recognized by the syntax-
checker.

Future work must also be done in the area of not only re-
stricting the presence of host-language features in miniKan-
ren programs, but also the usage of the Racket standard li-
brary. If we are going to prevent the programmer from us-
ing a function, the simplest way would be to not provide the
function in the first place. Though a simple idea, actually
decoupling the standard library from the user may prove to
be quite a feat. An effective and perhaps more easily imple-
mented alternative might be to simply restrict user access to
the bindings of the Racket functions.

We mention the ‘miniKanren standard library’ multiple
times throughout this paper: this has not yet been designed
nor implemented, and so more needs to be done in this
area, as well. The relational arithmetic suite that will be
introduced into this library by sophomore exists, but needs
to be formally documented along with the rest of this project.

7.3 Dedicated miniKanren tools
We believe that a better-tailored programming environment
that supports proper development and maintenance tools
would help novice users prevent or eliminate many of their
most common errors. Even unsophisticated programming
environments, that offer a bare minimum of programmer
comfort (e.g. syntax highlighting), help programmers avoid
many bugs. [7]

DrRacket provides an excellent graphical environment
for developing programs using the Racket programming
languages, featuring a sophisticated debugger, an algebraic
stepper, and support for user-defined plug-ins, in addition to
source highlighting for syntax and run-time errors. Embed-
ded languages such as miniKanren, however, have syntax
that extends or otherwise differs from the host language, and
tools meant for the host language do not, and cannot, naïvely
map to such extensions.

As it stands, no tools exist that have been tailored to
developing in the miniKanren relational programming lan-
guage. By extending the development environment of miniKan-
ren to match the language extensions [5], we hope to change
this, providing the first steps toward a sophisticated develop-
ment environment for working in miniKanren.



A. Relational debugging with freshman

Welcome to DrRacket, version 6.1 [3m].
Language: mk/freshman; memory limit: 128 MB.

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(cond
((equal? x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. fresh: did you mean "conde"?
parsing context:
while parsing a goal constructor
while parsing a goal- expression in: cond

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((equal? x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. conde: equal? may not be a goal constructor
(identi�er doesn't end in - o)
parsing context:
while parsing a goal constructor
while parsing a goal- expression
while parsing a sequence of goals in: equal?

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. conde: expected a goal- expression
parsing context:
while parsing a sequence of goals in: #t

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) (≡ #t out))
((not (equal? x a)) (member?o x d out))))))))

. conde: not may not be a goal constructor
(identi�er doesn't end in - o)
parsing context:
while parsing a goal constructor
while parsing a goal- expression
while parsing a sequence of goals in: not

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) (≡ #t out))
(( 6= x a) (member?o x d out))))))))

> (de�ne list - uniono
(λ (s1 s2 out)
(conde
((≡ ' () s1) (≡ s2 out))
((fresh (a d)

(≡ `(, a . , d) s1)
(fresh (b)
(member?o a s2 b)
(conde
((≡ b #t) (list - uniono d s2 out))
((≡ b #f)
(fresh (res )
(≡ `(, a . , res ) out)
(list - uniono d s2 res ))))))))))

> (run1 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2)))
> (run3 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2)) ((1 2) ()) ((1) (1 2)))
> (run9 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2))
((1 2) ())
((1) (1 2))
((1) (2))
((1 1) (1 2))
((2) (1 2))
((2 1) (2))
((1 2) (2))
((1 1 1) (1 2)))

References
[1] C. E. Alvis, J. J. Willcock, K. M. Carter, W. E. Byrd, and D. P.

Friedman. cKanren: miniKanren with constraints. Scheme
and Functional Programming, 2011.

[2] J. Bentley. Programming pearls: little languages. Communi-
cations of the ACM, 29(8):711–721, 1986.

[3] C. Brozefsky. core.logic and SQL killed my ORM,
2013. URL http://www.infoq.com/presentations/

Core-logic-SQL-ORM.

[4] W. E. Byrd, E. Holk, and D. P. Friedman. miniKanren, live and
untagged: Quine generation via relational interpreters (pro-
gramming pearl). In 2012 Workshop on Scheme and Func-
tional Programming, Sept. 2012.

[5] J. Clements and K. Fisler. “Little language” project modules.
Journal of Functional Programming, 20:3–18, 1 2010. ISSN
1469-7653. . URL http://journals.cambridge.org/

article_S0956796809990281.

[6] R. Culpepper and M. Felleisen. Fortifying macros. In Pro-
ceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, pages 235–246, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. .
URL http://doi.acm.org/10.1145/1863543.1863577.

[7] M. Ducassé and J. Noyé. Logic programming en-
vironments: Dynamic program analysis and debugging.
The Journal of Logic Programming, 19 - 20, Sup-
plement 1(0):351 – 384, 1994. ISSN 0743-1066.
. URL http://www.sciencedirect.com/science/

article/pii/0743106694900302. Special Issue: Ten
Years of Logic Programming.

[8] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
The TeachScheme! project: Computing and programming for

http://www.infoq.com/presentations/Core-logic-SQL-ORM
http://www.infoq.com/presentations/Core-logic-SQL-ORM
http://journals.cambridge.org/article_S0956796809990281
http://journals.cambridge.org/article_S0956796809990281
http://doi.acm.org/10.1145/1863543.1863577
http://www.sciencedirect.com/science/article/pii/0743106694900302
http://www.sciencedirect.com/science/article/pii/0743106694900302


every student. Computer Science Education, 14(1):55–77,
2004.

[9] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and
M. Felleisen. Drscheme: A pedagogic programming environ-
ment for scheme. In Programming Languages: Implementa-
tions, Logics, and Programs, pages 369–388. Springer, 1997.

[10] D. Friedman. C311/B521/A596 programming languages,
2014. URL https://cgi.soic.indiana.edu/~c311/

doku.php?id=home.

[11] D. Friedman, W. E. Byrd, and O. Kiselyov. The Rea-
soned Schemer. MIT Press, Cambridge, Mass, 2005. ISBN
9780262562140.

[12] J. Gibbons. Functional programming for domain-specific lan-
guages. Central European Functional Programming-Summer
School on Domain-Specific Languages (July 2013), 2013.

[13] D. Gregoire. Web testing with logic programming, 2013. URL
http://www.youtube.com/watch?v=09zlcS49zL0.

[14] J. Hemann and D. Friedman. microkanren: A minimal func-
tional core for relational programming. In Proceedings of
Scheme Workshop, 2013.

[15] O. Kiselyov. The taste of logic programming, 2006.
URL http://okmij.org/ftp/Scheme/misc.html#

sokuza-kanren.

[16] O. Kiselyov, W. E. Byrd, D. P. Friedman, and C. Shan. Pure,
declarative, and constructive arithmetic relations (declarative
pearl). In J. Garrigue and M. Hermenegildo, editors, Proceed-
ings of the 9th International Symposium on Functional and
Logic Programming, volume 4989 of LNCS. Springer, 2008.

[17] J. P. Near, W. E. Byrd, and D. P. Friedman. αleanTAP : A
declarative theorem prover for first-order classical logic. In
Proceedings of the 24th International Conference on Logic
Programming (ICLP 2008), volume 5366 of LNCS, pages
238–252. Springer-Verlag, Heidelberg, 2008.

[18] R. Senior. Practical core.logic, 2012. URL http://www.

infoq.com/presentations/core-logic.

[19] J. Spivey and S. Seres. Embedding Prolog in Haskell. In
Proceedings of Haskell Workshop, volume 99, pages 1999–
28, 1999.

[20] C. Swords and D. Friedman. rKanren: Guided search in
miniKanren. In Proceedings of Scheme Workshop, 2013.

https://cgi.soic.indiana.edu/~c311/doku.php?id=home
https://cgi.soic.indiana.edu/~c311/doku.php?id=home
http://www.youtube.com/watch?v=09zlcS49zL0
http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
http://www.infoq.com/presentations/core-logic
http://www.infoq.com/presentations/core-logic

	Introduction
	The miniKanren language
	The problem at present
	Our approach
	Implementation
	Collection: miniKanren
	Collection: mk
	Analysis and Results

	Related Work
	Conclusions and further work
	sophomore: Level up
	Improvements
	Dedicated miniKanren tools

	Relational debugging with freshman

