
ń* : Beyond Currying

Jason Hemann Daniel P. Friedman

Indiana University

{jhemann,dfried}@cs.indiana.edu

Abstract

Though the currying of functions has a long and storied his-

tory, the technique has found less acceptance in Scheme than

one might at �rst imagine. We present a function-creation

mechanism λ∗ that, while maintaining the functionality of

Scheme's λ, provides enhanced features of function abstrac-
tion and application, including automatic currying of func-

tions, automatic nesting of applications, and reasonable be-

havior when over- or under-supplied with arguments.

Categories and Subject Descriptors D.3.3 [Language

Constructs and Features]: Procedures, functions, and sub-

routines

Keywords currying, partial application, macro, Scheme

1. Introduction

The concept of currying functions is not new. The term

�currying� was coined by Christopher Strachey in 1967 for

Haskell Curry who used it extensively [4, 23], though the

idea was known to Moses Schön�nkel by at least 1920. In

his honor, the name �schön�nkeling� has also been used [2].

Quine, writing of Schön�nkel's work [20], describes the

concept thusly:

All functions, propositional and otherwise, are for

Schön�nkel one-place functions, thanks to the follow-

ing ingenious device (which was anticipated by Frege

(1893, §36)). Where F is what we would ordinarily

call a two-place function, Schön�nkel reconstrues it

by treating Fxy not as F (x, y) but as (Fx)y. Thus
F becomes a one-place function whose value is a

one-place function. The same trick applies to func-

tions of three or more places; thus �Fxyz� is taken as
�((Fx)y)z�.

The technique is deeply rooted in category theory [1]

and is widely used in languages that support �functions as

values�. In both Haskell and ML, for instance, all functions

are implicitly (automatically) curried.

Currying is, however, not so ubiquitous in Scheme. The

documentation for SRFI-26, which provides operators for a

form of partial application distinct from that possible with

traditional currying, suggests reasons this might be the case.

The Design Rationale states that Scheme is �not prepared to

deal with curried procedures in a convenient way� and that

�[t]he primary relevance of currying/uncurrying in Scheme

is to teach concepts of combinatory logic� [10]. We explore

these arguments further in Section 2.

In this paper, we suggest that there may yet be a reason-

able way to work with curried procedures in Scheme and

that they may have some practical use. To do so, we develop

systematically a mechanism for implicitly currying Scheme

functions. This mechanism also provides partial application

of functions, consistent behavior for an excessive quantity of

arguments, and consistent behavior for variadic and nullary

functions that we believe is consonant with such functions

created with Scheme's λ.

2. Currying, curry, and $

Currying began as a technique of mathematical logic, but

has found use in programming. Although there are n! ways
to curry an n argument function, here when we refer to cur-

rying we always mean currying from the left. Following the

terminology of Moreno et. al [12], we describe the applica-

tion of a curried function as partial, exact, or exceeding de-

pending whether the arguments provided to it are less than,

equal to, or greater than the number of bindings in the list of

bindings in the uncurried form.

We use the following conventions to describe function

arity. Formals may be proper or improper. Proper formals

denote functions of �xed arity. Functions with the empty

formals list are called nullary. We use the term unary for

functions of precisely one argument, and reserve polyadic

to mean functions of a �xed arity at least two. We de-

scribe those functions with a �xed, positive arity (unary and

polyadic functions collectively) as posary. A single variable

or an improper list of formals denote functions of variable

arity. We call functions whose formals is a single symbol

variadic, and use the term polyvariadic to mean functions

of variable arity mandated to have at least one element.

This discussion of the �ve non-overlapping formal param-

eter structures is summarized in Table 1.

By always currying from the leftmost argument, curried

functions provide, for free, partial application in the left

argument. Curried polyadic functions present opportunities

to η-reduce that would have been otherwise impossible due

Proper Improper

nullary () variadic y

unary (x)
polyvariadic (x+. y)

polyadic (x+ y)

Table 1. Formals of functions

to arity mismatch. Where available, taking advantage of

opportunities to η-reduce maymake for shorter, clearer code.

The veri�cation of programs, either formally or informally,

may also be aided by the code that currying can help create.

A straightforward implementation of an explicit mecha-

nism for currying functions in Scheme is of limited value

though.

(define-syntax curry

(syntax-rules ()

((_ (x . x∗) e) (λ (x) (curry x∗ e)))

((_ () e) e)))

Figure 1. A currying macro that takes a list of bindings and

returns nested functions of one binding each.

The macro in Figure 1 takes as arguments a non-empty

list of bindings and a body, akin to a subset of the func-

tionality of Scheme's λ. This macro fails to function as one

might hope when passed the empty list of bindings. Here,

and for the remainder of this discussion, we presume valid

data, though the need for this assumption is diminished as

the discussion continues.

It transforms the expression into one with the same body,

but nested within unary λs in the number of bindings. This

provides the ability to write functions as usual, but to ensure

that they now take arguments one at a time. This is similar

to a number of other implementations of currying [15, 18].

The resultant functions must be invoked a single argument

at a time as in the following example, whose value is 5.

((((((curry (a b c d e) e) 1) 2) 3) 4) 5)

Due to the highly parenthetical syntax of Lisp-like lan-

guages, currying in Scheme is typically viewed as somewhat

inelegant. While in some instances it might be desirable to

pass arguments one at a time, it is often more readable and

more edifying to pass all arguments at once, or in a couple

of distinct groupings. Passing arguments one at a time causes

the code to take up more room than it otherwise would. Too,

this verbosity may obscure understanding of the code's op-

eration.

A �nested application� macro, here named $, relieves the

burden of applying curried functions manually. The macro

$ applies arguments one at a time to a chain of nested

functions until the list of arguments is exhausted. As with

curry above, there are many implementations of $.

(define-syntax $

(syntax-rules ()

((_ f e) (f e))

((_ f e e∗ . . .) ($ (f e) e∗ . . .))))

Figure 2. A nested application macro, which passes each of

a list of arguments to a function until the list is exhausted.

While code written using both curry and $ is more

compact than with curry alone, it is unfortunate that we

now require a macro for both abstraction and application.

($ (curry (a b c d e) e) 1 2 3 4 5)

Moreover, while this suf�ces as an implementation of

currying in Scheme, this is far from ideal. For one, these

mechanisms offer no support for nullary or variadic λs. Sec-
ondly, the above example suggests that with this mechanism,

currying is primarily useful only as part of a �curry, special-

ize, uncurry� pattern: precisely the behavior SRFI-26 pro-

vides, only more generally.

All of this seems to explain the discussions that took place

prior to rati�cation of SRFI-26, or at least shed more light

on certain comments. From the above, one might indeed

be led to conclude �Scheme is not prepared to deal with

nested single-argument functions�, and that, apart from the

�curry, specialize, uncurry� pattern, �[c]urrying is pointless

in Scheme� [9].

3. Development of ń*

It may be that the identi�ed problems are not endemic to

currying in Scheme per se, but perhaps just to particular im-

plementations. In this section we develop iteratively, through

eight increasingly more general variants, a mechanism that

meets the above objections.

A mechanism for currying functions does not require

an operator like $. The λ∗ macro in Variant 1, with the

associated function app∗ below, provides curried function

de�nitions while allowing arguments to be passed as usual.

(define-syntax λ∗

(syntax-rules ()

((_ () e) e)

((_ (x . x∗) e)

(λ (x . a∗) (app∗ (λ∗ x∗ e) a∗)))))

(define app∗

(λ (f a∗)

(if (null? a∗)

f

(app∗ (f (car a∗)) (cdr a∗)))))

Variant 1: This de�nition of λ∗ uses app∗ which is recur-

sively de�ned over f and a∗.

This allows for the added �exibility that comes with cur-

ried functions, while at the same time functions can be cre-

ated and applied using the relatively more succinct syntax

of polyadic functions. From this follows short, �exible code

and advantages that come with η-reducing.
λ∗ is not, strictly speaking, actually currying the bind-

ings. Instead, it returns a function which, when supplied a

list of arguments, behaves as if it were curried. When sup-

plied a list of bindings, which must be non-empty, the sec-

ond clause is matched and λ∗ expands to a function expect-

ing one or more arguments. The �rst argument it is provided

is bound to the �rst variable in the bindings. Any remain-

ing arguments are successively passed to nested functions.

When there are no more bindings, the �rst clause is matched,

and the body itself is returned. The �rst clause must only be

reached in the base of a recursion, and any remaining argu-

ments are passed to the body. In that case the body must be

a unary function in order to avoid signaling an exception.

The use of x as both a pattern variable and as the �rst

argument to the function returned in the macro is deliber-

ate. The argument to the function is bound to x, which is

scoped over the entirety of the body, including nested func-

tions. The �rst argument is bound to x in the body by virtue

of hygiene in the syntactic rules system. The application of

additional arguments is performed by app∗ and the remain-

ing arguments are successively applied to nested functions.

If the function is partially applied, the value is a function

expecting the remainder of its arguments; if the function is

exactly applied, the result is the value of the body; and if it

is excessively applied, the excessive arguments are passed to

the value of the body.

> ((λ∗ (a b c) c) 1 2 3)

3

> (((λ∗ (a b c) c) 1) 2 3)

3

These examples demonstrate uses of λ∗. Arguments can

be supplied at once as with functions de�ned by λ, or in
groups of one or more in whatever manner is most conve-

nient. Unlike the earlier implementation, we make no use of

a special application form like $.

Because functions created with λ∗ apply any remaining

arguments to the body one at a time, we can supply argu-

ments to functions in what seems to be an arity mismatch,

but in fact produces the correct answer. Moreover, since ex-

cessive arguments are passed to the body one at a time, we

can nest unary Scheme λs inside a λ∗.

> (((λ∗ (a b) (λ∗ (c) c)) 1) 2 3)

3

> ((λ∗ (a) (λ (b) (λ (c) c))) 1 2 3)

3

This behavior is only available for Scheme λs of a single
argument. In the example below, for instance, attempting to

provide arguments to the body one at a time results in an ex-

ception, as the Scheme λ must have exactly two arguments.

> ((λ∗ (a b) (λ (d e) e)) 1 2 3 4)

exception

Worse, this de�nition of λ∗ is af�icted with a subtle, more

insidious �aw: the code generated is not tail recursive. The

following is an example of a program that, with Scheme's λ
loops inde�nitely, but when using λ∗ instead consumes all

available memory.

> (letrec ((fn (λ∗ (x) (fn x)))) (fn 1))

out of memory

Expanding (λ∗ (x) (fn x)), the de�nition of fn, re-

veals the mistake. With the λ∗ macro this will be trans-

formed into (λ (x . a∗) (app∗ (fn x) a∗)) where,

unlike with Scheme's λ, the invocation of (fn x) has be-

come a non-tail call. When invoked as above, those waiting

calls accumulate and lead to unbounded memory consump-

tion.

The implementation of λ∗ in Variant 2 remedies both of

those problems. By using Scheme's apply in the de�nition

of app∗th below, we gain the ability to use polyadic Scheme

functions as the body of an excessively-applied λ∗. In or-

der to ensure our programs are tail recursive, we delay the

recursive calls by thunking them, and invoke the thunks in

app∗th.

(define-syntax λ∗

(syntax-rules ()

((_ () e) e)

((_ (x . x∗) e)

(λ (x . a∗)

(app∗th (λ () (λ∗ x∗ e)) a∗)))))

(define app∗th

(λ (th a∗)

(if (null? a∗) (th) (apply (th) a∗))))

Variant 2:A rede�nition of λ∗ and a new de�nition app∗th.

Instead of calling itself recursively, app∗th uses Scheme's

apply, and λ∗ thunks the recursive calls to ensure tail recur-

sion.

The list of bindings is processed one at a time, creating

a series of nested functions, the body of each being a call

to app∗th. The �rst argument of all but the innermost is a

thunk whose body is the recursive call processing the re-

maining elements of the list of bindings. In the base case,

where there are no more bindings, the body of the thunk is

simply the expression passed as the body of λ∗. When the

list is exhausted, the result is simply the body. Because we

thunk recursive calls, calls to λ∗ are guaranteed to be tail-

recursive. And because Scheme's apply applies a function

to a list of arguments, and the functions created by λ∗ are

prepared to take a list of arguments of at least size one, we

retain the earlier behavior of nested λ∗s. At the same time, a

Scheme λ of two arguments that is the body of a λ∗ can now

be supplied two arguments directly, and the earlier example

loops inde�nitely. This implementation can no longer con-

tinually supply the excess arguments of a λ∗ successively to

nested unary Scheme λs. This behavior, remains for nested

unary functions constructed with λ∗, so effectively we lose

no functionality by using the app∗th of Variant 2.

Variant 2 now has the ability to pass arguments to posary

functions, and has the ability to partially apply λ∗ functions

to one or more arguments. However, this ability has come at

a steep price. In this implementation, for a series of functions

built from λ∗ with n total formal parameters to become

exactly applied, Scheme's apply will have been called n
times. This is an unnecessary cost. In Variant 3 apply is

called in the number of formal parameters only in the worst

case.

(define-syntax λ∗

(syntax-rules ()

((_ (a a∗ . . .) e)

(letrec

((rec

(case-λ
((a a∗ . . .) e)

((a a∗ rest)

(apply (rec a a∗ . . .) rest))

(some (get-more rec some)))))

rec))))

(define get-more

(λ (rec some)

(λ more

(apply rec (append some more)))))

Variant 3: This de�nition of λ∗ invokes a function capable

of taking its entire list of arguments for a partial application,

which often decreases the number of calls to apply.

The number of formal parameters required is clear at the

time of function de�nition. Using case-λ [8, 21] we in ef-

fect case on the number of actual arguments. In the �rst case,

the quantity is exactly that demanded by the function. In

the second the function is exceedingly applied, and the third

case of necessity matches argument lists shorter than that de-

manded by the function. In the �rst case, the formal param-

eters are paired with the arguments by virtue of hygene; we

simply return the body of the function. In the second case,

we invoke the function on exactly the quantity of arguments

which saturate it, and since there are more arguments to be

invoked, we apply the remainder to the value of that invo-

cation, which ought to return a procedure. In the third case,

the number of arguments is fewer than the number of formal

parameters, and so we return the function that results from

a call to get-more. This function awaits more arguments,

and when receiving some will append them to the list of ar-

guments already received before applying rec to this newly

augmented list of arguments.

This has in addition endowed it the ability to partially

apply a function to no arguments. It seems that, just as partial

application of one or more arguments is meaningful, the

partial application of a function with no arguments ought

to return a function expecting exactly as many arguments as

before. However, the cost here is also greater than one might

wish. A slight modi�cation to the prior variant gives that

capability without requiring the expensive append by taking

advantage of the fact rec is already recursively de�ned

(Variant 4). We add a fourth case to rec, where it receives

no arguments, and simply returns the de�nition of rec.

(define-syntax λ∗

(syntax-rules ()

((_ (a a∗ . . .) e)

(letrec

((rec

(case-λ
(() rec)

((a a∗ . . .) e)

((a a∗ rest)

(apply (rec a a∗ . . .) rest))

(some (get-more rec some)))))

rec))))

Variant 4:We special-case the application of no arguments,

so as to avoid the expense of an append.

This de�nition of λ∗ builds functions of one or more pa-

rameters that provide what we believe to be reasonable be-

havior when supplied zero or more arguments. It does so

regardless of whether the number of arguments is less than,

more than, or exactly as many arguments as the number of

parameters the function appears to expect. In implement-

ing this version of λ∗, we use polyvariadic formals-lists in

case-λ, which is the lynchpin of the macro's operation.

Our λ∗ macro itself, though, provides no support for

improper lists of formals. Although we can use Scheme's

λ for this purpose and λ∗ otherwise, we instead augment λ∗

with support for polyvariadic functions.

Here, the de�nition of λ∗ from Variant 4 is renamed

posary-h. When λ∗ in Variant 5 receives the arguments for

a function de�nition with a non-empty proper list of formals,

it passes them to posary-h. The second clause of the new λ∗

accounts for improper lists of formal parameters, and simply

passes them along to the newly-de�ned polyvariadic-h.

The polyvariadic-h macro is similar to posary-h. In

the case of an exact match (that is, when enough actual

arguments supplied to saturate a a∗. . ., and perhaps more),

then the body of the function is simply applied. The other

two cases are the same as the corresponding case-λ clauses

in the posary-h macro.

With this de�nition we provide support for posary and

polyvariadic functions. The following examples indicate that

the addition of this clause does not diminsh the ability to

(define-syntax λ∗

(syntax-rules ()

((_ (a a∗ . . .) e) (posary-h (a a∗ . . .) e))

((_ (a a∗ rest) e)

(polyvariadic-h (a a∗ rest) e))))

(define-syntax posary-h

(syntax-rules ()

((_ (a a∗ . . .) e)

(letrec

((rec

(case-λ
(() rec)

((a a∗ . . .) e)

((a a∗ rest)

(apply (rec a a∗ . . .) rest))

(some (get-more rec some)))))

rec))))

(define-syntax polyvariadic-h

(syntax-rules ()

((_ (a a∗ rest) e)

(letrec

((rec

(case-λ
(() rec)

((a a∗ rest) e)

(some (get-more rec some)))))

rec))))

Variant 5: The prior version is renamed posary-h, and

a new macro polyvariadic-h, which is similar in spirit,

but intended to account for functions with improper formals

lists, is added. Both are called from the new λ∗, which

merely chooses between these two cases.

use Scheme's variadic λs with λ∗, but show that we now no

longer need to use them.

> ((λ∗ (a) (λ (b . c) c)) 1 2 3 4)

(3 4)

> ((λ∗ (a b . c) c) 1 2 3 4)

(3 4)

Nullary and variadic functions must still be built with λ,
however. Different behavior is required for the completion

of processing a list of bindings and building a function with

an empty list of bindings or a symbol instead of a list.

Nullary and variadic functions built with Scheme's λ can

be intermixed with those built by λ∗. It is more desireable

to have a single function-creation mechanism, one by which

nullary and variadic functions can be built as well. In order

to do so, we add two more clauses to the λ∗ macro from

above.

This variant allows us to construct from within λ∗ nullary

functions identical in behavior to those built by Scheme's

λ. Upon re�ection, though, we would like nullary functions

(define-syntax λ∗

(syntax-rules ()

((_ () e) (λ () e))

((_ (a a∗ . . .) e) (posary-h (a a∗ . . .) e))

((_ (a a∗ rest) e)

(polyvariadic-h (a a∗ rest) e))

((_ a∗ e) (λ a∗ e))))

Variant 6: The λ∗ from Variant 5 is extended with clauses

which match nullary and variadic functions.

to also, when given arguments, pass those arguments to the

body.We believe this is a natural extension of the behavior of

λ∗ for functions of other arities, and maintains the behavior

of Scheme's λ when provided no arguments. With a slight

modi�cation of the �rst clause of Variant 6 of λ∗, we make

this possible as well.

(define-syntax λ∗

(syntax-rules ()

((_ () e)

(λ a∗ (if (null? a∗) e (apply (e) a∗))))

((_ (a a∗ . . .) e) (posary-h (a a∗ . . .) e))

((_ (a a∗ rest) e)

(polyvariadic-h (a a∗ rest) e))

((_ a∗ e) (λ a∗ e))))

Variant 7:When invoked with arguments, nullary functions

pass those arguments to the body.

This new de�nition of λ∗ in Variant 7 ensures that the

following examples now run.

> (((λ∗ () (λ∗ (a b c) c))) 1 2 3)

3

> ((λ∗ (a) (λ∗ () (λ∗ (d . e) e))) 1 2 3)

(3)

Heretofore we have restricted the λ∗ macro's behavior

to that of generating functions of a single body. Nothing is

lost, however, by generalizing to functions of one or more

bodies as in Variant 8. To do so, we treat the penultimate

de�nition of λ∗ as a helper macro, renamed λ∗-h, which is

called from λ∗. In doing so, we equip λ∗ with the capabilities

of Scheme's λ, and more. The complete de�nition of λ∗ is

presented in Variant 8.

This de�nition of λ∗ acts as a near drop-in replacement

for Scheme's λ. We conjecture that, modulo exception-

handlers, previously functioning programs should still work,

and future programs can be written with the additional power

provided by λ∗ of Variant 8.

4. All that glitters ...

We have spent some time describing the bene�ts of this

tool, and we would be remiss to continue without describing

examples of its use that might give one pause. The examples

(define-syntax λ∗

(syntax-rules ()

((_ a∗ e∗ . . .)
(λ∗-h a∗ (let () e∗ . . .)))))

(define-syntax λ∗-h

(syntax-rules ()

((_ () e)

(λ a∗ (if (null? a∗) e (apply (e) a∗))))

((_ (a a∗ . . .) e) (posary-h (a a∗ . . .) e))

((_ (a a∗ rest) e)

(polyvariadic-h (a a∗ rest) e))

((_ a∗ e) (λ a∗ e))))

(define-syntax posary-h

(syntax-rules ()

((_ (a a∗ . . .) e)

(letrec

((rec

(case-λ
(() rec)

((a a∗ . . .) e)

((a a∗ rest)

(apply (rec a a∗ . . .) rest))

(some (get-more rec some)))))

rec))))

(define-syntax polyvariadic-h

(syntax-rules ()

((_ (a a∗ rest) e)

(letrec

((rec

(case-λ
(() rec)

((a a∗ rest) e)

(some (get-more rec some)))))

rec))))

(define get-more

(λ (rec some)

(λ more

(apply rec (append some more)))))

Variant 8: λ∗

below demonstrate uses of λ∗ that, while reasonable upon

re�ection, seems slightly odd at �rst glance.

> ((λ∗ (a) (λ∗ () (λ∗ () (λ∗ (b) b)))) 1 2)

2

> (((((((((λ∗ (a b c) 4)))))))) 1 2 3)

4

The application of four arguments to the function proceeds

right past the two (λ∗ () . . .). Since any function can now
be partially applied to no arguments, and any arguments pro-

vided to expressions of the form (λ∗ () . . .) are passed

to the body, nullary λ∗ functions seem to be of little to no

use. Likewise, passing no arguments to a function demand-

ing some returns the original function, and this action can

be repeated over and over again. While these behaviors are

decidedly not wrong, they are perhaps mildly unsettling.

Programs which rely on arity mismatches to signal an

exception in the course of their correct functioning, for in-

stance, might not signal an exception as before. Programs

relying on such behavior may no longer work as expected.

Equally troubling, perhaps, this more general notion of

function de�nition and application may make small mistakes

more dif�cult to uncover. When reading code, the bindings

of a function de�nition no longer indicate how many argu-

ments it could or should be provided. That level of obscurity

demonstrates the utility of static typing and an associated

typechecker, such as in Typed Racket [22].

5. Related Works

The technique and practice of currying itself has been known

since before the advent of computers. Those interested in

early works on techniques of currying itself should look to

the works of Schön�nkel [20] and Curry [5]. An overview

is presented by Rosser [19], and a thorough history of the

lambda-calculus and combinatory logic is provided in Car-

done and Hindley [3]. Those interested in the mathematical

background of partial application, including the s-m-n theo-

rem, are referred to Kleene [13] and Rogers [6].

We were surprised to �nd so many interesting implemen-

tations as regards currying in a language like Scheme. Many

of those are limited to transforming functions of n argu-

ments into n nested unary functions, in the style of curry

above. A number of currying macros similar in respects to

those developed herein are mentioned below. Meunier, in ad-

dition to an explicit currying macro similar to curry, also

presents an implicit currying macro [15]. His curry macro

checks that the application is partial or exact; if partial, it

returns a function whose arity is equal to the number of ar-

guments yet to be received. One has the implicit currying

and returns the same procedure when invoked with no argu-

ments. Piet Delport's version processes the bindings as in λ∗,

but does not handle variadic functions or excessive applica-

tion [7, 16]. Kmett extends Delport's version to account for

the partial application of no arguments and excessive appli-

cations [14]. Kmett's is similar to λ∗, though λ∗ also handles

variadic functions. The Racket function curry allows curry-

ing of previously-built functions, and provides the option to

use keyword arguments [11].

The currying macros developed here, along with those

just described, provide for partial application in the leftmost

argument. SRFI-26 provides the cut and cute forms that al-

low for partial application of any of a function's arguments,

rather than just the leftmost one [10]. In instances where we

might like to at different times partially apply different argu-

ments to the same function, we cannot rely on using the left-

most argument position. With an exponentiation function,

for instance, at different times one might wish to partially

apply to it the base or the index. The forms cut and cute

provide the ability to the same function for both of those

partial applications, which currying and λ∗ cannot match.

Haskell's sections provide an operation similar to cute for

in�x binary operations [17].

6. Conclusions and Future Work

The examples of the use of λ∗ seem to suggest that there are

in fact uses of a form of currying in Scheme, and that λ∗ may

be a practical tool.

This mechanism allows for the behavior one would gain

from currying Scheme functions. It does so without having

to perform currying in the strictest sense and yet it provides

exactly the sort of partial application of functions that curry-

ing allows. Functions de�ned with λ∗ can also be called as

though they were polyadic Scheme functions built with λ, or
as some mixture of the two. In addition, λ∗ performs a simi-

lar sort of curry-like behavior for polyvariadic functions, and

provides meaning for excessively-applied functions as well

as partially-applied functions.

One goal of future research is practical programming ex-

perience in a language with λ∗-style functions as the primary

function de�nition construct. We also seek to investigate λ∗

in the context of types. Too, we hope to mitigate the per-

formance penalty of Scheme's apply, either by implement-

ing λ∗ in a language without the side-effects that induce the

copying of arguments, or special-casing certain common ar-

ities so as to not incur the cost as frequently.

We believe that λ∗ should be considered a useful mecha-

nism that provides additional tools to the programmer's tool-

box. Moreover, it should be taken as evidence of the impor-

tance of currying in Scheme, and beyond.

Acknowledgments

We are grateful to Andre Kuhlenschmidt, Chung-chieh

Shan, Cameron Swords, Sam Tobin-Hochstadt, and Mitch

Wand for their discussions and suggestions, which in several

places were critical to the development of the present work.

References

[1] T. Bartels. Currying, May 2010. URL http://ncatlab.

org/nlab/show/currying.

[2] C. Bozsahin. Combinatory Linguistics. Walter de Gruyter,

2012.

[3] F. Cardone and J. R. Hindley. History of lambda-calculus and

combinatory logic. Handbook of the History of Logic, 5, 2006.

[4] H. Curry. Some philosophical aspects of combinatory logic.

In The Kleene Symposium, pages 85�101. North Holland,

Amsterdam, 1980.

[5] H. B. Curry and R. Feys. Combinatory logic, Vol. I. Studies in

Logic and The Foundations of Mathematics. North-Holland,

Amsterdam, 1958.

[6] M. Davis. Computability & unsolvability. McGraw-Hill (New

York), 1958.

[7] P. Delport. curried.scm, September 2013. URL https:

//gist.github.com/pjdelport/6535964.

[8] R. K. Dybvig and R. Hieb. A new approach to procedures with

variable arity. Lisp and Symbolic Computation, 3(3):229�244,

1990.

[9] S. Egner. Changes to the design of sr�-26, Febru-

ary 2002. URL http://srfi.schemers.org/srfi-26/

mail-archive/msg00016.html.

[10] S. Egner. Notation for specializing parameters without cur-

rying, June 2002. URL http://srfi.schemers.org/

srfi-26/srfi-26.html.

[11] M. Flatt and PLT. The racket reference, 2013. URL http:

//docs.racket-lang.org/reference/.

[12] J. C. González-Moreno, M. T. Hortal-González, and

M. Rodríguez-Artalejo. Denotational Versus Declarative

Semantics For Functional Programming, pages 134�148.

Springer Berlin Heidelberg, 1992.

[13] S. C. Kleene. Introduction to Metamathematics. Van Nos-

trand, 1952.

[14] E. Kmett. Curried scheme, August 2009. URL http://

comonad.com/reader/2009/curried-scheme/.

[15] J. A. Meunier. Function currying in scheme, March

1997. URL http://www.engr.uconn.edu/~jeffm/

Papers/curry.html.

[16] J. A. Ortega-Ruiz. Scheme code capsule: currying, February

2007. URL http://programming-musings.org/2007/

02/03/scheme-code-capsule-currying/.

[17] S. L. Peyton-Jones. Haskell 98 language and libraries: the

revised report. Cambridge University Press, 2003.

[18] Programming Praxis. Standard prelude, 2013. URL

http://programmingpraxis.com/contents/

standard-prelude/#higher-order-functions.

[19] J. B. Rosser. Highlights of the history of the lambda-calculus.

Annals of the History of Computing, 6(4):337�349, 1984.

[20] M. Schön�nkel. On the building blocks of mathematical logic.

In From Frege to Gödel, pages 355�366. Harvard University

Press, 1924.

[21] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Find-

ler, and J. Matthews. Revised [6] Report on the Algorithmic

Language Scheme. Cambridge University Press, 2010.

[22] S. Tobin-Hochstadt and M. Felleisen. The design and imple-

mentation of typed scheme. Proc. Symposium on Principles

of Programming Languanges, 2008.

[23] D. Turner. Currying, or schon�nkeling?, 1997.

URL http://computer-programming-forum.com/

26-programming-language/976f118bb90d8b15.htm.

