Form over Function

Teaching Beginners How to Construct Programs
Michael Sperber
@xctive group

Collaborators:

Marcus Crestani, Martin Gasbichler,
Herbert Klaeren, Eric Knauel

@ University of Tubingen

Wednesday, September 12, 12

Back at the Ranch ...

MORE THAN 600,000 COPIES SOLD

CHILDREN:

THE CHALLENGE

EEE moE & TE R
The Classic Work on
Improving
Parent-Child Relations
Intelligent, Humane, and
Eminently Practical
ENan B "R N EnN

RUDOLF DREIKUS, M.D.,
with Vicki Soltz, R.N.

27. Don't Feel Sorry

Wednesday, September 12, 12

Volker Claus’s Trick

Wednesday, September 12, 12

College announces investigation

Inappropriate collaboration alleged on a take-home final

‘We take academic integrity very seriously because it goes to the heart of our educational mission,”
said Michael D. Smith, dean of the Faculty of Arts and Sciences. "Academic dishonesty cannot and
will not be tolerated at Harvard.”

Wednesday, September 12, 12

mindset

THE NEW PSYCHOLOGY OF SUCCESS

HOW WE CAN
LEARN TO FULFILL
OUR POTENTIAL

“Will prove to be
one of the most
influential books ever

- about motivation.”
*pdaren tin g —Po BRONSON, author
. bUS i ness of NurtureShock
xSchool

xrelationships

CAROL S. DWECK, Ph.D.

Wednesday, September 12, 12

So How Is This About
Scheme!

Self-Deception

® plagiarism
® stronger students are more vocal

® strong students teach themselves

Wednesday, September 12, 12

Scheme Is Great For

Beginners

Syntax
Size
Functional

Easy to transition to X

Structure and
Interpretation
of Computer
Programs

Wednesday, September 12, 12

Scheme Is Great For
Beginners

® Functional

Quest

aaaaaaaaaaaaaaa
with Julie Sussman

VWhat Is Important to
You!

Dictionary

Sys-tem-at-ic | sisto'matik

adjective
done or acting according to a fixed plan or system; methodical: a systematic
search of the whole city.

DERIVATIVES
syssteme.ats.i.caldy | -1k(0)I€ |adverb,

sysstemeastist | sistomo tist jnoun

ORIGIN early 18th cent.: from French systématique, via late Latin from

late Greek sustematikos, from sustema (see SYSTEM)

Wednesday, September 12, 12

Geometric Shapes

A geometric shape is one of the following:
® square (parallel to axes)
® circle

® overlay of 2 geometric shapes

Wednesday, September 12, 12

Geometric Shapes

Implement geometric shapes! Write a
program that allows creating geometric
shapes und to check whether a given point is
inside our outside a geometric shape!

Wednesday, September 12, 12

Geometric Shapes

Shape

i

Square Circle Overlay

Design Recipes

How to organize the composition. Sometimes, a particular assignment will not exactly fit into
+his outline form, but, generally, the form can be used as a guide to check against to be certair
you are putting toggther your composition correctly.

I. Introduction {usually is 1 paragraph in length)
A. Attention Step
B. Background Information
1. any information required for an understanding of the thesis statement. For exampl

S when a paper is analyzing a story, include its title, author, and some brief plofl
etc. _information.

C. Thesis Statenent

1. purpose
2. scope
a.
b.
c.

3. direction
II. Body (usually is 3 paragraphs, with each paragraph developing one of the areas of the thesis)

A. First Area of Scope (usually one paragraph)
1. transition
2, topic sentence
3. further explanation/clarification of the topic sentence
4, amplification of the topic sentence
\a%s examples, details, proofs, quotes, etc., that support the topic sentence in
g. [some way

Wednesday, September 12, 12

HOW TO DESIGN PROGRAMS

An Introduction to Programming and Computing

Matthias Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

Wednesday, September 12, 12

Data Analysis

® shapes
® squares
® circles
® overlays
® points

® (2-dimensional plane)

Wednesday, September 12, 12

Mixed Data

A geometric shape is one of the following:
® acircle
® 3 square

® an overlay

Wednesday, September 12, 12

Composite Data

A circle has:
® center

® radius

Design Recipe

“When your data analysis contains
composite data, identify the signatures of the
components. Then write a data definition
starting with the following:

+ An X consists of / has:
; — field: (sigi1)

- field, (sign)

Wednesday, September 12, 12

Design Recipe

Then translate the data definition into a
record definition:

(define-record-procedures sig
constr pred?
(select: ... select,)

Wednesday, September 12, 12

Design Recipe

Also write a constructor signature of the
following form:

(: constr (sigi ... Sl1gn -> siqg))

Also, write signatures for the predicate and the
selectors:

(: pred? (any -> boolean))
(: select: (sig -> siqgi))

(: selectn (sig -> sign))

Wednesday, September 12, 12

Circles

A circle consists of:

- center (point)

- radius (real)
define-record-procedures circle
make-circle circle?

(circle-center circle-radius))

make-circle (point real -> circle))

circle? (any -> boolean))
circle-center (circle -> point))
circle-radius (circle -> real))

~ e we we

—_— —_— —_— —_—
(X J o0 o0 [X]

Wednesday, September 12, 12

Composite Data

A square consists of:
® |ower left corner

® sjze

Wednesday, September 12, 12

Squares

; A square consists of:

; — lower left corner (point)

; — size / edge length (real)

(define-record-procedures square

make-square square?

(square-corner square-size))
make-square (point real -> square))
square? (any -> boolean))
square-corner (square -> point))
square-size (square -> real))

—_— —_— —_— —_—
(X J o0 o0 [X]

Wednesday, September 12, 12

Composite Data
with Self Reference

On overlay consists of:
® a geometric shape

® and another geometric shape

Overlays

; An overlay consists of:

; — a geometric shape “on top” (shape)

; — a geometric shape “on bottom” (shape)

(define-record-procedures overlay

make-overlay overlay?
(overlay-top-shape overlay-bot-shape))
make-overlay (shape shape -> overlay))
overlay? (any -> boolean))
overlay-top-shape (overlay -> shape))
overlay-bot-shape (overlay -> shape))

—_— —_— —_— —_—
(X J o0 o0 [X]

Wednesday, September 12, 12

Points

; A point consists of:
; — X coordinate (real)
; — y coordinate (real)
(define-record-procedures point
make-point point?

(point-x point-y))

make-point (real real -> point))
point? (any -> boolean))

point-x (point -> real))

point-y (point -> real))

—_— —_— —_— —_—
o0 [X] (X J (X J

Wednesday, September 12, 12

°
4
°
4
°
’

°
4

A

Geometric Shapes

geometric shape 1s one of the following:

a circle (circle)

a square parallel to the axes (square)

on overlay of two geometric figures (overlay)

(define shape
(signature

(mixed circle

square
overlay)))

Wednesday, September 12, 12

Examples

)
|
1
X)4
0. 1 ¢y
_ &
Y
- L INC L

.\ ‘

Wednesday, September 12, 12

Examples

define pl (make-point 10 20)) ; Point at X=10, Y=20
define p2 (make-point 30 50)) ; Point at X=30, Y=50
define p3 (make-point 40 30)) ; Point at X=40, Y=30

Square w/ corner at pl, size 40
Circle around p2, radius 20
Overlay of circle und square
Circle around p3, radius 10
Overlay of ol and c2

((
((
((
(define sl (make-square pl 40))
(define cl (make-circle p2 20))
((
((
((

we

we

define ol (make-overlay cl sl))
define c2 (make-circle p3 15))
define 02 (make-overlay ol c2))

we we

we

Wednesday, September 12, 12

First Steps
short description
is a point within a shape?*”////////’

(: point-in-shape? (point shape -> boolean))$\\\\
- signature
(check-expect (point-in-shape? p2 cl) #t)
(check-expect (point-in-shape? p3 c2) #t)
(check-expect (point-in-shape? (make-point 51 50) cl) #f)
(check-expect (point-in-shape? (make-point 11 21) sl) #t)
(check-expect (point-in-shape? (make-point 49 59) sl) #t)
(check-expect (point-in-shape? (make-point 9 21) sl) #f)
(check-expect (point-in-shape? (make-point 11 19) sl) #f)
(check-expect (point-in-shape? (make-point 51 59) sl) #f)
(check-expect (point-in-shape? (make-point 49 61) sl) #f)

(check-expect (point-in-shape? (make-point 40 30) o02) #t)
(check-expect (point-in-shape? (make-point 0 0) o02) #f)

examples

Wednesday, September 12, 12

Template

(define point-in-shape?
(lambda (p s)
ce))

Wednesday, September 12, 12

Skeleton

(define point-in-shape?
(lambda (p s)
P ... S .
(point-x p) ... (point-y p)
(cond

((circle? s) ...)

((square? s) ...)

((overlay? s) ...))))

Wednesday, September 12, 12

More Skeleton

(define point-in-shape?
(lambda (p s)
P ... S .
(point-x p) ... (point-y p)
(cond
((circle? s)
(circle-center s) ... (circle-radius s) ...)
((square? s)
(square-corner s) ... (square-size S) ...)
((overlay? s)
(overlay-top-shape s) ... (overlay-bot-shape s) ...))))

Wednesday, September 12, 12

More Skeleton

(define point-in-shape?
(lambda (p s)
P «ec S ...
(point-x p) ... (point-y p)
(cond
((circle? s)
(circle-center s) ... (circle-radius s) ...)
((square? s)
(square-corner s) ... (square-size S) ...)
((overlay? s)
(point-in-shape? p (overlay-top-shape s))
(point-in-shape? p (overlay-bot-shape s)) ...))))

Wednesday, September 12, 12

Definition

(define point-in-shape?
(lambda (p s)
(cond
((circle? s)

(<= (distance p (circle-center s))
(circle-radius s)))

((square? s)
(and (>= (point-x p)
(<= (point-x p)

(>= (point-y p)
(<= (point-y p)

((overlay? s)

(point-x (square-corner s)))

(+ (polint-x (square-corner s))
(square-size s)))

(point-y (square-corner s)))

(+ (point-y (square-corner s))
(square-size s)))))

(or (point-in-shape? p (overlay-top-shape s))

Wednesday, September 12, 12

Refinement

(define point-in-shape?
(lambda (p s)
(cond
((circle? s)
(<= (distance p (circle-center s))
(circle-radius s)))
((square? s)
(let ((corner (square-corner s)))
(let ((cx (point-x corner))
(cy (point-y corner))
(size (square-size s))
(x (point-x p))
(

y (point-y p)))
(and (>= X CX)
(<= x (+ cx size))
(>= Yy cy)
(<= y (+ cy size))))))
((overlay? s)

(or (point-in-shape? p (overlay-top-shape s))
(point-in-shape? p (overlay-bot-shape s)))))))

Wednesday, September 12, 12

Enforcement

Untitled - DrRacket
Untitled ¥ (define ..)¥ Save |

Step @@l Check Syntax Q Run #* Stop @
(define inc

(lambda (x)
(set! x (+ x 1))
X))

Welcome to DrRacket, version 5.1.3 [3m)].
Language: Die Macht der Abstraktion; memory limit: 128 MB.

lambda: Lambda-Abstraktion hat mehr als einen Ausdruck als Rumpf
>

Die Macht der Abstraktion¥

2:2]

Wednesday, September 12, 12

Enforcement

Enforcement

Wednesday, September 12, 12

Measure

Aufgabe 7 (amy)

40

35

30

25

20

15

10

Wednesday, September 12, 12

Observe & Measure

Aufgabe 9 (Umgebungsdiagramm)

40

35 -

30

25 A

20 -

15 -

10 -

0 -

b-
m-
- |-

~ |

=

Wednesday, September 12, 12

Wednesday, September 12, 12

How Many Forms!?

@ed oo D e d |
'@ | @ 1 b i 1@ 90—t
- STOR SICET T e
¢S 9 a9 P 1
£ 3RV ST
& @ ielpe e e

» 4 e Y e e Qe
L3N RO

I e L ar

{

How Many Forms?

Wednesday, September 12, 12

Scheme

... Is our business!

Practice

So Why Again s
Scheme Important!?

Wednesday, September 12, 12

Signature violations

wNaVe) list-dmda.scm - DrRacket)
list-dmda.scm™ (define ..)v Save [l Stepwsll: Check Syntax Q Run & Stop @
(: foo-list (natural -> (list number)))
(define foo-list
|(lambda (n)
(cond
((=n 0) empty)
((> n 0) (cons "foo" (foo-list (- n 1)))))))

(check-expect (foo-list 0) empty)
(check-expect (foo-list 2)
(list "foo" "foo"))

Ran 2 tests.
All tests passed!

2 signature violations.

Signature violations:
got |"foo"| in list-dmda.scm, line 6, column 27 , signature
to blame: procedure in list-dmda.scm, line 3, column 2
got |"foo"| in list-dmda.scm, line 9, column 14 , signature
to blame: procedure in list-dmda.scm, line 3, column 2

() “« »
' " hY . N\
. Hide) (Undock |

Die Macht der Abstraktion™ 3:2 *

Wednesday, September 12, 12

Properties

(check-property
(for-all ((a number)
(b number))

(= (+ab) (+Dba))))

Properties

(: commutativity
((%a %a -> %b) signature -> property))
(define commutativity
(lambda (op sig)
(for-all ((a sig)
(b s1g))
(expect (op a b) (op b a)))))

Wednesday, September 12, 12

T
[}

5

pE S

.,
1 |
L .

™
-

Dhe Macht der Abstraktion custom ™

18:0

Wednesday, September 12, 12

Why Not Start With
Types!?

data Tooll = ...
data ToolStatel = ...

data Tool2 = ...

data ToolState?2 .o
data Tool = Tooll | Tool2

data ToolState = ToolStatel | ToolState2

Wednesday, September 12, 12

Summary

® Don’t love Scheme.

® Your students don’t have to love you.
® Only program what you can explain.
® Observe & measure.

® Kill your darlings.

® Fall in love with Scheme all over.

Wednesday, September 12, 12

Collaboration Record

