
Form over Function
Teaching Beginners How to Construct Programs

(Distilled Tutorial)

Michael Sperber
Active Group GmbH

michael.sperber@active-group.de

Marcus Crestani
University of Tübingen

crestani@informatik.uni-tuebingen.de

Abstract
Teaching beginners how to program is hard: As knowledge about
systematic construction of programs is quite young, knowledge
about the didactics of the discipline is even younger and corre-
spondingly incomplete. Developing and refining an introductory-
programming course for more than a decade, we have learned
that designing a successful course is a comprehensive activity and
teachers should consider and question all aspects of a course. We
doubt reports of sweeping successes in introductory-programming
classes by the use of just one single didactic device—including
claims that “switching to Scheme” magically turns a bad course
into a good one. Of course, the choice of individual devices (in-
cluding the use of Scheme) does matter, but for teaching an ef-
fective course the whole package counts. This paper describes the
basic ideas and insights that have driven the development of our
introductory course. In particular, a number of conclusions about
effective teaching were not as we had originally expected.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—Methodologies; K.3.2 [Computers and Education]:
Computer and Information Science Education—Computer Science
Education

General Terms Design, Languages

Keywords Introductory Programming

1. Introduction
In this tutorial, we distill the basic ideas and insights that have
driven the development of our introductory course, which we
started in 1999 at the University of Tübingen and has since been
adopted by the Universities of Freiburg and Kiel.

Teaching the introductory programming course starts with a
clear idea of what we want to teach: We believe that much of pro-
gramming should be done systematically, with a clearly defined
path from problem to program. Matthias Felleisen’s group pio-
neered the Program by Design approach [7], and we have been fol-
lowing in their footsteps [9]. Everything we do flows from our de-
sire to enable students to construct programs systematically. How-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ACM SIGPLAN Workshop on Scheme and Functional Programming September 9,
2012, Copenhagen, Denmark
Copyright c© 2012 ACM [to be supplied]. . . $10.00

ever, this has been exceedingly difficult: The very idea of program-
ming systematically is controversial among practitioners as well as
educators, and the idea of doing anything systematically is anath-
ema to many of our students as they begin the course.

Teaching the course, we have tried to observe and measure the
effectiveness of our teaching. This resulted in many depressing con-
clusions, unexpected insights and startling successes. In particular,
a number of conclusions about effective teaching were not as we
had originally expected. In no particular order:

• Continual evaluation of teaching success is important.
• Personal supervision is important.
• Traditional teaching evaluations are almost worthless.
• Form matters more than working programs.
• Our students are not like us.
• Cheating is a significant problem.
• Grade pressure works.
• The requirements for a teaching language are different than the

requirements for a production language.
• Students have to like neither us nor Scheme to learn success-

fully.
• Telling students that what they are learning is worthwhile does

not matter.

One theme has emerged from these disparate observations: Most
teachers, when evaluating their students’ performance on home-
work and exams focus on the correctness of function: A student
receives credit when a program written as an answer to a problem
statement fulfills its purpose correctly. In our experience, this is not
enough: For many students, this approach fails at enabling them to
write functioning code, and, even when they do, that code is often
atrocious in structure. One of the most visible and, to visitors, sur-
prising aspects of our course is that we insist that students follow
form. We do this not just for the code produced by the students,
but also for the learning habits we try to impress on our students.
We have found that moving from the previous, “function-oriented”
approach to “form-oriented” has improved the effectiveness of our
teaching significantly. In this paper, we describe the most important
aspects of our course.

Overview The paper is structured as follows: Section 2 intro-
duces the program-by-design approach we use as the basis for
our course. Section 3 discusses programming-language issues, and
how Scheme fits in the picture. Section 4 gives an overview over
the design recipes. Section 5 describes a sample teaching session,
followed by notes explaining some of the salient aspects of that

session in section 6. Section 7 describes the important factors in
making the students succeed at learning the material. Section 8 de-
scribes some of the organizational measures that we use to help
in this endeavor. Section 9 has some notes on follow-up courses.
Section 10 contains a summary.

2. Program by Design
At the heart of our course is the idea that students (or anyone, for
that matter) can program systematically: following a known, ex-
plicit system of instructions on how to convert a problem state-
ment into a program that implements the solution. The Program by
Design project (http://www.programbydesign.org) calls this
system design recipes. Programming systematically may seem like
an obvious aspect of a programming course. However, many pro-
fessional programs written by graduates of a programming course
have just as obviously not been written systematically. In reality,
teaching systematic programming is much harder than it seems at
first because most programmers use intuition and experience to
guide their problem-solving strategy, and often take shortcuts in
their heads before writing code down—and so do most teachers.
Actually verbalizing intuition and experience to the point that the
result serves as an explicit, teachable system is significant work, pi-
oneered in introductory programming by the book How to Design
Programs (HtDP) [7].

In HtDP (and our own DMdA [9]), the development of every
single program follows from the design recipes. This is a quality of
these books that is not immediately apparent to the casual reader, to
whom they may seem merely pedantic and boring: They repeat the
application of the same set of design recipes over and over, without
taking into account “obvious” shortcuts or optimizations. However,
it is precisely this quality that makes these books appropriate for
their target audience—the students—rather than the teachers.

The pedantic nature of HtDP/DMdA is a testament to one of the
fundamental problems of the teacher—the curse of knowledge [10]:
The teacher looks at textbooks through the eyes of an experienced
computer scientist, and is likely to prefer a book with clever ideas
and daring examples—for example, one with brilliant algorithms,
clever abstractions and data structures with unexpected properties.
These are wonderful examples for the ingenuity of clever computer
scientists of the past. Unfortunately, by their very nature, these ex-
amples were not developed systematically, and are thus not system-
atically teachable. Forcing them upon beginning students does not
help them develop programming prowess of their own.1

Consequently, we follow the design recipes slavishly when do-
ing “live coding” in classes, despite the strong temptation to be
“clever” and take shortcuts. Even knowing what the process is in
principle, it is easy for teachers to underestimate the rigor involved
in this procedure.

3. Programming Languages for Beginners
The programming language used in an introductory course is a
means to an end. In our case, it serves two needs:

• as an expository device for the design recipes, and
• as a vehicle for directed practice.

Fulfilling these needs is, unfortunately, not a matter of merely
choosing the right language. In particular, standard Scheme fulfills

1 A case in point is the famous Structure and Interpretation of Computer
Programs (or SICP) [1], one of the greatest computer-science books of
all time. However, SICP introduces programming mostly through a free-
wheeling set of brilliant examples without explaining methodology, and
does little to enable beginning students to construct programs similar to
those examples.

none of the above requirements: Not every element of the design
recipes has a corresponding language construct, and the full gener-
ality of Scheme syntax is difficult to use for beginners, at least in
the conventional Scheme IDEs and editors made for professional
programmers.

Just creating a new language to meet the needs of the course is
tempting, especially to people in the programming language com-
munity. However, there is again the real danger of the curse of
knowledge: A language that is attractive to the teacher is not neces-
sarily an appropriate language for the student. The key, therefore,
is not so much to design a language but to evolve it, continually ob-
serving how students fare when they use it, and making improve-
ments based on those observations.

This is where the Racket system and its Scheme heritage come
in: Scheme allows us to add new procedures and syntactic forms
that appear just like the existing ones, as well as “removing” ex-
isting forms, essentially by developing library modules. This is at
least an order of magnitude easier than making the corresponding
changes in a language that lacks Scheme’s flexibility.

Scheme and Racket programmers, of course, have always
known this when they write programs professionally. In fact, this is
also a crucial quality when evolving a programming system for be-
ginners: As we were implementing our teaching languages (repli-
cating the experience of PLT [3]), we were able to ship updated
versions as libraries to the students on a weekly basis, always in-
corporating improvements that came from insights we had gained
by looking over students’ shoulders. (To this day, we update the lan-
guages based on feedback, but at a slower pace.) So Scheme/Racket
allowed us to innovate on language design without being hampered
by an underlying fixed language implementation or standard.

The second crucial factor in the development of the teaching
languages is the programming environment: Emacs or Eclipse
are hardly appropriate tools for beginners. DrRacket (formerly
DrScheme) [6] not only provides a vastly simpler user interface, it
also allows us to tailor the user experience of beginners in various
ways. This includes improved feedback for errors, and graphical
tools for visualizing program execution and testing results.

The result of this development—at this point—is a set of lan-
guage levels that are recognizably Scheme dialects, but also differ
from Scheme in various ways: The language levels impose various
restrictions that help beginners avoid common mistakes. They also
add language constructs—specifically record-type definitions, sig-
natures and test cases—that correspond to elements of the design
recipes.

Note that the syntax of our languages is still parenthesis-based,
maybe the most obvious invitation of criticism. As Scheme pro-
grammers, we know how important the syntax is to us, but, again
this does not necessarily mean the syntax is appropriate for be-
ginners. Our experience has shown, however, that the parenthesis-
based syntax works just fine for beginners. (We even eschew the
square brackets that HtDP uses to differentiate certain constructs.)

Another controversial choice is the omission of static typing,
which may be surprising as the design recipes are essentially a
types-based method of program construction. Type errors are often
hard to understand for beginners, especially as they provide no
examples for concrete evaluations that may go wrong. Moreover,
static type systems reject some perfectly correct and systematically
written programs, and explaining the artifacts of the type system
that are responsible would detract from the main purpose of the
course. Instead, we use signatures [3], which fulfill a similar role
to types: They allow students to state the shape of data, and are
checked automatically, albeit at run time.2

2 A future experiment we are planning is to add an advanced language level
that interprets signature declarations as type declarations.

4. Using the Design Recipes
A typical lecture of our beginner’s course features live coding. We
present a problem and we show our students how to systematically
solve the problem, as if they were doing it themselves. We either
use the blackboard or a computer for live coding. (In the teaching
language, substantial programs fit on a blackboard or a computer
screen.)

We teach systematic programming by using a data- and test-
driven top-down design, formalized in design recipes. The univer-
sal design recipe for writing a procedure is the following:

Construct a procedure in the following order:

short description write a one-line description

data analysis analyze the involved data and determine the
sorts of data

signature choose a name for the procedure and write the
signature

test cases write a number of test cases

skeleton derive the skeleton of the procedure from the sig-
nature

template derive the template from the signature and the
data analysis by applying the corresponding design
recipes

body complete the body of the procedure

test make sure your test cases run successfully

First, we focus on the actual problem by writing a short description.
Then, we identify and define the data. Our students learn to doc-

ument and build the implementation of the data by using specific
design recipes. We teach our students the following standard cate-
gories of data:

primitive data like numbers, strings, or booleans

composite data that consists of several components

mixed data that could be one of several kinds of data

For each case, there is a specific design recipe that leads us from
the informal data definition explicitly to a working representation
in code. When the data structures are implemented, we write down
a signature for the procedure that establishes the procedure’s name
and the kinds of input and output data. The next step is writing
down concrete examples for the implemented data structures and
test cases for the procedure.

Then, we start the implementation of the procedure via what
we call the skeleton, which is a straightforward translation of the
procedure’s signature. We implement the procedure by using the
data analysis. For every kind of data, we provide a design recipe
that contributes a code template to the procedure depending on the
sort of data. The recipes make the construction of a procedure’s
body a systematic effort that is driven by the data.

The skeleton and the various templates are snippets of code with
placeholders. (We uses ellipses) A program with ellipses is
an intermediate result, the placeholders indicate what we need to
do next. To make the construction of a program traceable, it is
important to have each step produce a specific piece of the final
result.

The design recipes separate the systematic aspects of problem
solving from domain-specific or “creative” aspects of program-
ming. Once the systematic aspects are in place, the creative aspects
become manageable. In our approach, once there is no more appli-
cable design recipe, the procedure contains ellipses that we need to
fill. Only then, we need to use a deeper understanding of the prob-

lem and domain-specific knowledge to fill in the missing bits. (This
is often shockingly easy.)

When we teach our students, we always stick to the systematic
approach. We never combine several “trivial” steps in a single one.
Even though we are often tempted to instantly replace some ellipses
on the fly with the “obvious” solution, we avoid doing so. It is
crucial to explicitly write down the intermediate results to visualize
where we are in our problem solving process.

5. Sample Teaching Session
In this section we give an example problem and show how we
solve the problem by following the design recipes. We do this in
some detail, to illustrate the steps a teacher would go through when
explaining how to solve the problem. We use a well-worn problem
statement originally formulated by Matthias Felleisen:

A geometric shape in the two-dimensional plane is one of
the following:
• a circle
• a square (parallel to the axes)
• an overlay of two geometric shapes

Implement geometric shapes! Write a procedure that checks
whether a given point is inside or outside a geometric shape!

We solve the problem with the language level Die Macht der
Abstraktion [3] that comes with DrRacket.

We start with the data analysis. The first step of the data analysis
is to collect all the different sorts of data. The problem statements
yields the following:

• shapes
• circles
• squares
• overlays
• points

(Arguably, there is also the two-dimensional plane, but it—like
air—does not require explicit representation.)

The next step is to consider the structure of each sort. The
wording “one of the following” in the problem statement identifies
geometric shapes as mixed data. Here is the design recipe for mixed
data, which we either put on a projector or have handed out to the
students on paper:

When your data analysis contains mixed data, write a data
definition starting with the following:

; An x is one of the following:
; - sort1 (sig1)
; ...
; - sortn (sig2)

This leads to the following signature definition:

(define sort
(signature
(mixed sort1 ... sortn)))

As a prelude, we ask students to identify how many different sorts
comprise a mixed-data definition, and to let that guide the process
of filling out the above template. This leads to the data definition:

; A geometric shape is one of the following:

; - a circle (circle)
; - a square parallel to the axes (square)
; - an overlay of two geometric shapes (overlay)

Writing the code for shapes along this recipe is straightforward:

(define shape
(signature
(mixed circle square overlay)))

The forms signature and mixed are part of our language: shape
is defined to be a signature for a mixed data type. We use circle,
square, and overlay as signatures representing circles, squares,
and overlays that have yet to be defined.

On with the data analysis: The next sort in the problem state-
ment is circles. We need to decide what kind of data would rep-
resent a circle—several choices are possible and valid, which we
can discuss with the students. Here, we choose to describe a cir-
cle through its center and radius. Thus, a circle has two attributes
or parts—compound data. We refer to the design recipe for com-
pound data, which goes like this:

When your data analysis contains compound data, identify
the signatures of the components. Then write a data defini-
tion starting with the following:

; An x consists of / has:
; - field1 (sig1)
; ...
; - fieldn (sig2)

Then translate the data definition into a record definition:

(define-record-procedures sig
constr pred?
(select1 ... selectn)))

Write a constructor signature of the following form:

(: constr (sig1 ... sign -> sig))

Also, write signatures for the predicate and the selectors:

(: pred? (any -> boolean))
(: select1 (sig -> sig1))
...
(: selectn (sig -> sign))

As with the mixed data, we informally ask students to start filling in
this template by considering how many components the compound
data has. So, for the circle we ask How many components does a
circle have? We conduct a brief show of hands, possibly asking stu-
dents who show something other than two to explain their reasons.
Once we agree on “two,” we can write down the data definition.

; A circle consists of:
; - center (point)
; - radius (real)

The data definition translates straightforwardly into a record defi-
nition and signatures for the procedures defined by it:

(define-record-procedures circle
make-circle circle?
(circle-center circle-radius))

(: make-circle (point real -> circle))

(: circle? (any -> boolean))
(: circle-center (circle -> point))
(: circle-radius (circle -> real))

The form define-record-procedures defines the signature
circle and the procedures needed for manipulating records: The
make-circle procedure constructs a new circle, circle? is a
predicate to distinguish circles from other sorts, and the selectors
circle-center and circle-radius access the components of a
circle.

The form : defines the signatures for the procedures, the arrow
-> separates the sorts of input parameters from the sort of the output
parameter. The notation is hopefully easy enough to understand.
Some signatures are predefined: any for arbitrary values, boolean
for booleans, and real for real numbers. The signature point that
represents points in the plane has yet to be defined. (All signatures
but the one for make-signature are redundant—the next section
describes the rationale.)

The next piece of data on our list is squares. Again, the repre-
sentation of a square is not detailed in the problem statement, we
therefore need to discuss and choose how to represent a square as
data. Here, we choose to represent a square with a lower left corner
and a size. Again, we ask How many components? Again, we may
have a discussion on the correct answer. Once we agree on “two”,
we can fill out the template, yielding this data definition:

; A square consists of:
; - corner (point)
; - size (real)

Then we can translate the data definition into a record definition
and signatures:

(define-record-procedures square
make-square square?
(square-corner square-size))

(: make-square (point real -> square))
(: square? (any -> boolean))
(: square-corner (square -> point))
(: square-size (square -> real))

Somewhat arbitrarily, we choose to handle points next. Since the
shapes are on a two-dimensional plane, it is natural to use a carte-
sian representation with an x and a y coordinate. We get this:

; A point consists of:
; - x coordinate (real)
; - y coordinate (real)
(define-record-procedures point
make-point point?
(point-x point-y))

(: make-point (real real -> point))
(: point? (any -> boolean))
(: point-x (point -> real))
(: point-y (point -> real))

Next on our list are overlays. According to the problem statement
an overlay consists of two shapes. Therefore, it is compound data,
resulting in this data definition:

; A overlay consists of:
; - top (shape)
; - bottom (shape)

Again, we can translate the data definition into code:

(define-record-procedures overlay
make-overlay overlay?
(overlay-top overlay-bottom))

(: make-overlay (shape shape -> overlay))

Figure 1. Shape examples

(: overlay? (any -> boolean))
(: overlay-top (overlay -> shape))
(: overlay-bottom (overlay -> shape))

We note that overlays contain two self-references: An overlay con-
tains two shapes, which can themselves be overlays.

This concludes the first part of our solution—data analysis and
data definitions. Our recipes led from informal data definitions to
code that implements the data.

Next, we write a number of examples for our defined data
types that we can use in our test cases. Since we are dealing with
geometry, it is helpful to draw a picture. A doodle is sufficient,
figure 1 shows an example.

Using the doodle, we write code that creates the correspond-
ing objects. To make the connection between information and code
apparent, the examples contain comments that describe the repre-
sented information.

; point at x=10, y=20
(define p1 (make-point 10 20))
; point at x=30, y=50
(define p2 (make-point 30 50))
; point at x=40, y=30
(define p3 (make-point 40 30))
; square with corner at point p1, size 40
(define s1 (make-square p1 40))
; circle around point p2, radius 20
(define c1 (make-circle p2 20))
; overlay of circle c1 and square s1
(define o1 (make-overlay c1 s1))
; Circle around point p3, radius 15
(define c2 (make-circle p3 15))
; Overlay of overlay o1 and circle c2
(define o2 (make-overlay o1 c2))

Now that we have defined the data, we need to write the procedure
that checks whether a given point is inside or outside a geometric
shape. The universal design recipe for procedures, detailed in the
previous section, leads the way:

First, we write a one-line description—exactly one line:

; Is a point within a shape?

Then, we choose a name for the procedure and we write the sig-
nature. A signature establishes the procedure’s name and the kinds
of input and output data. From the problem statement it is appar-
ent that the procedure accepts a point and a shape and returns a
boolean, therefore the signature is this:

(: point-in-shape? (point shape -> boolean))

Next up are test cases, for which we can use the examples. (We
insist on doing the tests first.) The teaching language contains the
form check-expect that accepts two operands that we expect to
be equal. If they are not equal, the test cases fail.

(check-expect
(point-in-shape? p2 c1) #t)
(check-expect
(point-in-shape? p3 c2) #t)
(check-expect
(point-in-shape? (make-point 51 50) c1) #f)
(check-expect
(point-in-shape? (make-point 11 21) s1) #t)
(check-expect
(point-in-shape? (make-point 49 59) s1) #t)
(check-expect
(point-in-shape? (make-point 9 21) s1) #f)
(check-expect
(point-in-shape? (make-point 11 19) s1) #f)
(check-expect
(point-in-shape? (make-point 51 59) s1) #f)
(check-expect
(point-in-shape? (make-point 49 61) s1) #f)
(check-expect
(point-in-shape? (make-point 40 30) o2) #t)
(check-expect
(point-in-shape? (make-point 0 0) o2) #f)
(check-expect
(point-in-shape? (make-point 30 65) o2) #t)
(check-expect
(point-in-shape? (make-point 40 17) o2) #t)

Finally, we start with the actual procedure definition by writing
down the skeleton. The skeleton derives directly from the signature;
we make use of the procedure name and the number of arguments.
The only addition are the names for the arguments:

(define point-in-shape?
(lambda (p s)

...))

Note that this is exactly the way we present the skeleton. Specifi-
cally, we write down the ellipsis. (And we expect the students to do
likewise.)

Now we begin constructing the body of the procedure by re-
peatedly adding relevant templates. First, we expect to use the ar-
guments in its body:

(define point-in-shape?
(lambda (p s)

... p ... s ...))

Again, we write down the ellipses, clearly noting that the procedure
is incomplete, and where we need to add more code.

Since p is compound data, the procedure likely needs the com-
ponents of the point. There is a design recipe that covers the occur-
rence of compound data:

When your data analysis finds compound data, add (select
x) for each field of the compound data to the procedure,
where select is the selector of a field and x is the name
of the procedure’s parameter.

We therefore add selector applications for the point’s fields to the
template:

(define point-in-shape?
(lambda (p s)
... p ... s ...
... (point-x p) ... (point-y p) ...))

Since s is mixed data, the procedure needs to distinguish the var-
ious sorts of shapes. The design recipe for mixed data provides a
template:

If the predicates for the sorts are called pred? 1 . . .pred? n,
a procedure that accepts mixed data as input has the form:

(: proc (sig -> ...))
(define proc
(lambda (a)

(cond
((pred? 1 a) ...)
...
((pred? n a) ...))))

The right-hand sides are completed according to the design
recipes of the particular sorts.3

When applying the design recipe, we refer back to the data def-
inition for shapes. We ask: How many different sorts comprise
shapes? When we agree on “three”, we start typing out the cond
form with three branches, only then filling out the predicate appli-
cations. This yields:

(define point-in-shape?
(lambda (p s)
... p ... s ...
... (point-x p) ... (point-y p) ...)
(cond

((circle? s) ...)
((square? s) ...)
((overlay? s) ...)))

Next, we complete the right-hand sides for the different branches
of the cond statement. In each case—circle, square, overlay—we
have to deal with compound data, therefore the design recipes for
compound data suggests that we may need to access the compound
data’s fields. We add selector applications:

(define point-in-shape?
(lambda (p s)
... p ... s ...
... (point-x p) ... (point-y p) ...)
(cond

((circle? s) ... (circle-center s)
... (circle-radius s) ...)

((square? s) ... (square-corner s)
... (square-size s) ...)

((overlay? s) ... (overlay-top s)
... (overlay-bottom s) ...)))

Finally we make use of the fact that overlays contain self-referen-
ces: overlay-top and overlay-bottom yield shapes. Of course,
there is a design recipe for self-referential data:

3 Usually, we expect to cover all possible cases with explicit tests, rather
than have the last one be a fall-through else clause: This makes students
aware what data they actually need to handle in a branch. We do teach how
else works, but most examples that contain an “else” are binary ifs.

When your data analysis finds self-referential data, wrap it
with a recursive call.

Therefore, we recursively call point-in-shape? on the compo-
nents of the overlay:

(define point-in-shape?
(lambda (p s)

... p ... s ...

... (point-x p) ... (point-y p) ...)
(cond
((circle? s) ... (circle-center s)

... (circle-radius s) ...)
((square? s) ... (square-corner s)

... (square-size s) ...)
((overlay? s)
... (point-in-shape? (overlay-top s))
... (point-in-shape? (overlay-bottom s))
...)))

Now we have all the elements of the program in place that we were
able to systematically derive from the procedure’s input and output
data.

Only now we need domain-specific knowledge to combine the
fragments in a way that the procedure does what we expect, i.e.
that the previously written test cases work. We tackle the branches
of the cond statement one at a time:

• For circles, we already have the radius and the center in the
skeleton. The student needs the insight that a point is within
a circle if the distance between the point and the center is
smaller than the radius. The distance is an intermediate result
that deserves its own procedure:

; Calculate the distance between two points
(: distance (point point -> real))

For now, we pretend that we have already written the procedure
(using a design recipe called wishful thinking) and we use it in
the case for circles:

(cond
((circle? s)
(<= (distance p (circle-center s))

(circle-radius s)))

• For squares, the coordinates of the point have to be compared
to the coordinates of the square’s corner. All these components
are already present in the skeleton. The connection is not par-
ticularly hard:

(cond
...
((square? s)
(and (>= (point-x p)

(point-x (square-corner s)))
(<= (point-x p)

(+ (point-x (square-corner s))
(square-size s)))

(>= (point-y p)
(point-y (square-corner s)))

(<= (point-y p)
(+ (point-y (square-corner s))

(square-size s)))))

(In class, this part of the template is taught using more than one
step.)

• For overlays, we already have two recursive calls that solve the
problem for the top and bottom shape separately. We just have
to connect both answers to solve the problem for the overlay
itself. The logical or does this:

(cond
...
((overlay? s)
(or (point-in-shape? p (overlay-top s))

(point-in-shape? p (overlay-bottom s))))

Now the body of our procedure is complete. We clean up the re-
maining ellipses and fragments that we did not need. The com-
pleted procedure looks like this:

(define point-in-shape?
(lambda (p s)
(cond

((circle? s)
(<= (distance p (circle-center s))

(circle-radius s)))
((square? s)
(and (>= (point-x p)

(point-x (square-corner s)))
(<= (point-x p)

(+ (point-x (square-corner s))
(square-size s)))

(>= (point-y p)
(point-y (square-corner s)))

(<= (point-y p)
(+ (point-y (square-corner s))

(square-size s)))))
((overlay? s)
(or (point-in-shape? p (overlay-top s))

(point-in-shape? p (overlay-bottom s))))

Before we are able to finally run our program and make sure that all
our test cases work, we need to write the procedure distance that
we have used to write the code for circles. We leave this (ellipses
and all) as an exercise to the reader.

6. Notes on Teaching
The previous section may seem excruciatingly pedantic to the
reader. (It was painful to write.) Yet, being pedantic and tedious
about this is precisely the point: We follow the design recipes to at
least this level of detail over and over—with every single example
that we present. This—and only this—qualifies us to ask the same
of the students. Once we become sloppy and take shortcuts, the
students feel licensed to do the same—with the crucial difference
that they usually fail.

In particular, we insist that the students perform each interme-
diate step of the program separately. (Some homework exercises
only ask for certain steps of the sequence to drive home that point.)
Writing down the ellipses during live coding makes this quite ex-
plicit.

The informal data definitions are redundant with the code. How-
ever, we discovered that the redundancy helps the students practice
the connection between information and the data that represents it.

We also insist, for record definitions, on the full set of signa-
tures, even though all but the constructor signature are redundant.
This was not always the case: When we originally introduced signa-
tures, we only wrote down the constructor signature. However, the

connection between the constructor’s signature and the other pro-
cedure’s signatures was not initially obvious to our students. The
students asked us to write down all other signatures, and make them
a requirement of the design recipe. It becomes more obvious to a
beginner how to use the predicate or the selectors when they ex-
plicitly have written down their signatures and they are able to look
them up later. We were happy to follow our students’ suggestion.

Students make surprising mistakes considering the number of
components of compound data and the number of cases for mixed
data. During live coding, we always have the students determine
the count of components, and we may ask the students to assist
with other steps of the design recipes. This interaction stresses the
importance and makes them aware of possible difficulties and lets
them carefully reason about this step.

The order of the steps the universal design recipe for procedures
mandates aims to help our students to fill the missing gaps after
there is no more applicable design recipe. First, the format of the
short description makes them focus on what precisely the procedure
is supposed to do. Then, writing test cases before implementing the
procedure forces students to actually think about what constitutes
a correct solution of the problem. The insight they gain in this step
is the problem-specific knowledge that translates directly to how
they are supposed to connect the code templates in the procedure’s
body.

Self-references and recursion is a topic in a beginner’s course
that is considered difficult, and therefore hard to teach and even
harder to understand by the students. With the design recipes, it
comes naturally. In the example problem we implemented a self-
referential data structure and a recursive procedure in passing,
thanks to the design recipes: An overlay contains two shapes and
in turn is a shape itself. The design recipe handles this by having us
wrap every self-referential data with a recursive procedure call.

7. Learning Habits
The classroom exposition described earlier is the first step towards
teaching systematic programming. As every teacher knows, how-
ever, teaching does not equal learning. Just as we take a principled
approach to presentation—refined by experience—we organize the
rest of the course to fulfill the promise of the material.

Two insights on the nature of effective learning have shaped
the organization of our course. Foremost is the role of practice
in learning. To become good at any sufficiently complex activity,
learners need to engage in deliberate, directed practice [5]. The
“directed” part cannot be overemphasized: In order to improve their
competence, students must engage in practice activities with the
specific goal of getting better. Effective practice also includes:

• making an effort to achieve good technical proficiency (not just
valid results),

• setting specific goals, and
• seeking and using feedback (which, to be effective, must be

prompt and precise).

If students do not engage in directed practice, even excellent mate-
rial presented in a clear and understandable fashion will not make
a significant impact on the students’ competence.

The DrRacket environment, the design-recipe approach to
teaching [7, 9], and the HtDP/DMdA teaching languages [3] all
support deliberate practice: The design recipes establish a stan-
dard of technical proficiency; DrRacket provides excellent feed-
back; programs written in the Scheme-based teaching-languages
are small compared to, say, Java programs, which enables the stu-
dents to practice more per time unit.

However, the software and excellent material are necessary, but
not sufficient prerequisites for enabling directed practice. Early

iterations of our course were not as successful as we would have
liked at getting students to engage in deliberate practice, despite
the use of DrRacket and the design recipes as well as vast efforts
at explaining the benefits of practice, trying to provide positive
motivation and establishing mutual trust [2].

One possible explanation for this problem is the mindset
that students use in approaching learning activities, in particular
whether competence is due to fixed, innate talent, or a process of
learning and deliberate practice [4]. While we did not conduct any
study on the prevalence of one or the other mindset, our students
at times exhibited a startling distrust in their abilities to improve
their competence over time. (“It’s very frustrating to see that other
students finish the lab exercises sooner than I do.”)

In other words: Many students believe they cannot master the
material, ever, because their talent is not sufficient. From this,
students often conclude that practice opportunities provided as part
of the course are useless. At that point, a student faces the options
of either dropping out or trying to obtain credit through plagiarism.
Plagiarism is a huge problem: Not only does it inhibit learning,
it poisons any evaluation results a teacher may obtain about the
effectiveness of the course.

Thus, our efforts go towards providing opportunities and in-
centives that encourage students to engage in effective learning
habits. Clearly, we cannot assume that the students possess those
habits coming out of high school. The biggest challenge is breaking
through the “fixed mindset,” the belief a student has that program-
ming abilities are either innate or cannot be acquired. To do this,
we try to provide all students with a successful learning experience
early on in the course. This, in turn, we do with homework or lab
exercises that we somehow try to “get” the students to complete
successfully.

This “getting” is exceedingly difficult with students that have
a fixed mindset, which comes with low tolerance for frustration.
Those students give up on exercises at the slightest hint of trouble—
or often just at the belief that, surely, there will be trouble at some
point. To break through this mindset, we tried means traditionally
associated with effective teaching—positive motivation, enthusias-
tic presentation, explaining the relevance of what we were doing—
with little success. These students just do not believe what we know
about effective learning: they are different from us.

As a result, we have since adopted a somewhat contrarian ap-
proach: We try to make the students follow effective learning habits,
through personal supervision and a rigid set of rules that award
credit only for practicing those habits. Conversely, we try to make
the students succeed by providing help at every step—through per-
sonal supervision, the teaching assistants providing various help
channels, a discussion forum, wearing dress shirts and suits in-
stead of Mickey-Mouse t-shirts, and generally by being obliging,
formal, and professional when dealing with our students. We ad-
just those measures with each iteration of the course, partly be-
cause of changes in the bureaucratic framework at the University,
partly because we keep looking for new ways of encouraging ef-
fective habits. These measures have improved the effectiveness of
the course measurably [2].

8. Organizational Measures
This section summarizes an assortment of organizational measures
we have used and found effective to encourage practice and self-
improvement:

Fight plagiarism We make the students aware of plagiarism and
the consequences (we use a two-strikes policy, where the first
strike already discards some homework credit) by having them
sign a form stating that they would not plagiarize. We dedicate

one of our teaching assistants to the sole task of detecting
plagiarism.

Placement test In the first lecture we give our students a placement
test with 10th-grade-level math problems. Since we do not
announce the placement test, the students are not prepared.
The results of the test are not part of the final grade. Instead,
we use the results to get a general idea of their math skills,
to assemble heterogeneous study groups, and to be able to
correlate the results of the final exam with the students’ abilities
at the beginning of the class.

Weekly exercises We publish weekly homework exercises that the
students have to solve within one week. The sheets are graded
by our teaching assistants and discussed in weekly exercise
sessions guided by our teaching assistants.

Assisted programming Students have to solve programming ex-
ercises under the supervision of teaching assistants in our com-
puter lab. The supervisors ensure that the students use the de-
sign recipes when programming and they help over the humps
that inevitably occur. The students use a restricted login envi-
ronment that does not allow anything else than working on their
programming problems.

Mandatory exercises Two of the weekly exercises, one towards
the beginning and one towards the end of a course, are manda-
tory exercises. Each student has to individually present the solu-
tion to the teaching assistant. Mandatory exercises do not con-
tribute to the final score; a student needs to pass each mandatory
exercise to be able to pass the course.

Group exercises Twice during the semester we partition our stu-
dents into heterogeneous groups of four, using the results of
the placement test. Each group has to solve a larger problem.
Only one of the team members gets to present the result; the
grade of that one person becomes the grade of everyone in the
group. (When bureaucratically possible, we make these exer-
cises mandatory—a group needs to pass for its members to pass
the course.)

Exams and grades At the end of the class, there is a final exam.
The grade of the exam and the grade of all the exercises
throughout the semester determine the final grade that is rel-
evant for the degree.

Teaching assistants Our teaching assistants are extremely impor-
tant to the success of the course: In addition to holding tuto-
rial sessions and providing help to the students, they supervise
the students in the assisted-programming sessions, and grade
the various exercises throughout the semester. We hold a “train-
ing boot camp” (typically two days) for our teaching assistants
before the course starts and we meet them each week for ohe
hour. We also provide them with grading instructions and we
distribute additional material that they can use in their exercise
sessions.

In-class quizzes During many lecture sessions, we ask our stu-
dents a few simple quiz questions, giving them five minutes or
so to discuss the solution with their neighbors. We then ask the
students who have come to conclusions different from those of
their neighbors to identify themselves, and we use this to start
short discussions.

These measures are labor-intensive and expensive. Moreover, writ-
ing and debugging good exercises takes time. We feel they are well-
invested, however, given how they make the difference between
success and failure for a significant proportion of our students.

9. Beyond the Intro Course
In Tübingen, the intro course that is covered by this tutorial is fol-
lowed by a second-semester course on object-oriented program-
ming based on PLT’s How to Design Classes [8], using Java. How
to Design Classes is a sequel to HtDP, so the transition is quite
seamless.

Using Java in the second-semester course does come with a
number of problems though: While the language does in princi-
ple support the design recipes, its verbosity and complexity often
get in the way of concise examples. Moreover, the lack of proper
tail recursion means that the programmer has to use Java’s poorly
designed loop constructs while and for. Using these loop con-
structs in turn requires imperative programming using accumula-
tors, which is significantly more difficult than structural recursion.

Another problem with the use of Java is that the lecturers
of follow-up courses invariably assume we have taught a “Java
course” where more emphasis is put on the ability to use, e.g.,
java.util.Hashtable than on the ability to properly design pro-
grams. For example, a consistent feedback we have had over the
years is that students use recursion where lecturers expect loops.
We have thus expanded our coverage of loops in the course. How-
ever, time is at a premium when only two semesters are available
for basic training in program design, which creates a mismatch
between what lecturers of follow-up courses expect and what we
teach.

We see no easy way to resolve this problem: Even if we spent all
of our time on a “Java course,” it would not be sufficient to cover the
entire language and its standard libraries. Our tentative conclusion
is to move away from Java for a future course, both to improve
the teaching experience, to more clearly define expectations that
lecturers of follow-up courses can have, and to offer them a clean
slate on which to root Java.

Having said that, feedback from students reporting on their
ability to work on the programming exercises of follow-up courses
has been uniformly positive.

10. Summary
Here is a summary of the insights and techniques that have helped
us improve our course:

Program systematically We write example programs systemati-
cally, with a clear path from a problem to a program, using the
design recipes, driven by data analysis. Thus, students can trace
every single step of the programming process to an explicit in-
struction. This enables even weak students to successfully write
substantial programs.

Avoid eureka moments We carefully and explicitly separate prob-
lems that we solve using the design recipes from those that re-
quire a eureka-like insight—i.e. clever algorithms or data struc-
tures, and we avoid the latter. While most problems can be
solved completely by just using the design recipes, actually do-
ing so requires commitment and discipline.

Practice, practice, practice To learn programming successfully,
students need as much practice as they can get. While the
systematic approach provides a guide as to what to practice,
we provide significant encouragement and guidance on how to
practice.

Make students succeed We use every incentive we can think of
that is permissible in the bureaucratic and legal environment of
a University course to foster directed practice. We try to enforce
the use of the design recipes and proper learning habits through
a rigid set of rules and credit incentives. Moreover, we support

students as they work in supervised lab exercises to ensure they
have positive learning experiences.

Language is a means to an end The programming language is
only a means to the end of teaching students how to program
systematically. (As is everything else.) If we can think of ways
to change it that improve the effectiveness of learning, we make
the change.

In conclusion, we stress the form of what we do and what we
make students do to help them succeed. Merely insisting on correct
outcomes is not enough. The form we use for a particular aspect
of the course is subject to continual improvement. In particular, the
programming language we use is a descendant of Scheme, which
we continue to refine. Reassuringly, the core of Scheme has served
us well, and its flexible nature allows us to express most of our
refinements within the language.

Acknowledgments Listing everyone who has been instrumental
in making our course a success—specifically the teaching assis-
tants and students—would by itself fill the space of this paper. In
particular, we thank Herbert Klaeren for providing the environment
for developing the course, Matthias Felleisen and the members of
PLT for the pioneering work that made our course possible, as well
as the lecturers who have taught the course: Martin Gasbichler, Eric
Knauel, Andreas Schilling, Peter Thiemann, Michael Hanus, Jan-
Georg Smaus, and Torsten Grust.

References
[1] H. Abelson, G. J. Sussman, with J. Sussman. Structure and Interpre-

tation of Computer Programs. MIT Press, Cambridge, Mass., second
edition, 1996.

[2] A. Bieniusa, M. Degen, P. Heidegger, P. Thiemann, S. Wehr, M. Gas-
bichler, M. Crestani, H. Klaeren, E. Knauel, and M. Sperber. HtDP and
DMdA in the battlefield. In F. Huch and A. Parkin, editors, Functional
and Declarative Programming in Education, Victoria, BC, Canada,
Sept. 2008.

[3] M. Crestani and M. Sperber. Growing programming languages for
beginning students. In S. Weirich, editor, Proceedings of the Inter-
national Conference on Functional Programming 2010, Baltimore,
Maryland, USA, Sept. 2010. ACM Press, New York.

[4] C. Dweck. Mindset: The New Psychology of Success. Ballantine
Books, Dec. 2007.

[5] K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer. The role of delib-
erate practice in the acquisition of expert performance. Psychological
Review, 100(3):363–406, 1993.

[6] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. The
DrScheme project: An overview. SIGPLAN Notices, 33(6):17–23,
June 1998.

[7] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to
Design Programs. MIT Press, 2001.

[8] M. Felleisen, M. Flatt, R. B. Findler, K. E. Gray, S. Krishnamurthi,
and V. K. Proulx. How to Design Classes. http://www.ccs.neu.
edu/home/matthias/htdc.html, Feb. 2011.

[9] H. Klaeren and M. Sperber. Die Macht der Abstraktion. Teubner
Verlag, 1st edition, 2007.

[10] C. Wiemann. The “curse of knowledge,” or why intuition about
teaching often fails. APS News, 16(10), 2007. http://www.aps.
org/publications/apsnews/200711/backpage.cfm.

