
Tutorial: Optimizing JavaScript Code for V8

Florian Loitsch
Google Inc.

floitsch@google.com

http://floitsch.blogspot.com/2012/03/optimizing-for-v8-introduction.html

September 2012

The performance of programs running in JavaScript engines is notori-
ously difficult to predict. Indeed, JavaScript is a complex language and, due
to time-constraints and limited engineering resources, all popular virtual ma-
chines only optimize a subset of the language. Code that runs outside this
(non obvious) sweet spot can pay huge performance penalties.

JavaScript engines generally have at least two modes of operation: one
non-optimized, and one optimized. Initially all functions are compiled to run
in the non-optimized mode. Heuristics, like statistic profilers or invocation
counters, then trigger the expensive recompilation of hot methods. Methods
frequently see a performance improvement of an order of magnitude when
they run in optimized mode. It is hence crucial that programs spend their
time in optimized code.

There are several ways compilers can do this:

• avoid statements that cannot be optimized by the JIT. Indeed, V8 still
cannot generate optimized code for all JavaScript constructs.

• avoid bailouts. Optimized code is generated under the assumption that
the generated code will run with similar dynamic types as seen before.
If that assumption fails, the optimized code must be thrown away.

• make code monomorphic. Optimized code is more efficient if it spe-
cializes for fewer dynamic types. Frequently it is possible to reduce the
number of types by duplicating functions.

Knowing when and where to apply these tips is almost impossible without
proper tool-support. In this tutorial I will discuss the listed optimization
techniques and present the tools that allow the investigation of V8 generated

1



code. In particular, I will focus on V8s tracing flags, which report when
methods are (de)optimized or inlined, Hydrogen traces, which represent V8s
intermediate representation, and assembly dumps. During the talk I will
concentrate on a Scheme-to-JavaScript compilation, but all talking-points
will be of interest to any developer creating JavaScript code.

2


