
From Variadic Functions to Variadic Relations

A miniKanren Perspective

William E. Byrd and Daniel P. Friedman
Department of Computer Science, Indiana University, Bloomington, IN 47408

{webyrd,dfried}@cs.indiana.edu

Abstract
We present an implementation of miniKanren, an embed-
ding of logic programming in R5RS Scheme that comprises
three logic operators. We describe these operators, and use
them to define plus o, a relation that adds two numbers. We
then define plus ∗o, which adds zero or more numbers; plus ∗o

takes exactly two arguments, the first of which is a list of
numbers to be added or a logical variable representing such
a list. We call such a relation pseudo-variadic. Combining
Scheme’s var-args facility with pseudo-variadic helper rela-
tions leads to variadic relations, which take a variable num-
ber of arguments. We focus on pseudo-variadic relations,
which we demonstrate are more flexible than their variadic
equivalents.

We show how to define plus ∗o in terms of plus o using
foldr o and foldl o, higher-order relational abstractions de-
rived from Haskell’s foldr and foldl functions. These higher-
order abstractions demonstrate the benefit of embedding re-
lational operators in a functional language. We define many
other pseudo-variadic relations using foldr o and foldl o, con-
sider the limitations of these abstractions, and explore their
effect on the divergence behavior of the relations they define.
We also consider double-pseudo-variadic relations, a gener-
alization of pseudo-variadic relations that take as their first
argument a list of lists or a logical variable representing a
list of lists.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords miniKanren, variadic, pseudo-variadic, double-
pseudo-variadic, Scheme, logic programming, relations

1. Introduction
Scheme’s var-args mechanism makes it easy to define vari-
adic functions, which take a variable number of arguments.
miniKanren, an embedding of logic programming in Scheme,
makes it easy to define variadic relations using that same

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

mechanism. A variadic relation takes a variable number of
arguments, but can be defined in terms of a pseudo-variadic
helper relation that takes only two arguments, the first of
which must be a list. A fresh (uninstantiated) logical vari-
able passed as the first argument to a pseudo-variadic re-
lation represents arbitrarily many arguments in the equiva-
lent variadic relation—because of this flexibility, we focus on
pseudo-variadic relations instead of their variadic brethren.

Certain variadic functions can be defined in terms of bi-
nary functions using the foldr or foldl abstractions [8]; cer-
tain variadic relations can be defined in terms of ternary
relations using foldr o or foldl o, the relational equivalents
of foldr and foldl , respectively. foldr o, foldl o, and other
miniKanren relations can be derived from their correspond-
ing function definitions—we have omitted these derivations,
most of which are trivial. The ease with which we can define
higher-order relational abstractions such as foldr o demon-
strates the benefits of using Scheme as the host language for
miniKanren.

We also consider double-pseudo-variadic relations, which
are a generalization of pseudo-variadic relations. A double-
pseudo-variadic relation takes two arguments, the first of
which is either a list of lists or a logical variable repre-
senting a list of lists. (Unless we explicitly state that a
variable is a lexical variable, it is assumed to be a logical
variable.) As with pseudo-variadic relations, certain double-
pseudo-variadic relations can be defined using higher-order
relational abstractions.

miniKanren is a descendant of the language presented
in The Reasoned Schemer [6], which was itself inspired by
Prolog. Not surprisingly, the techniques we present will be
familiar to most experienced Prolog programmers.

This paper has four additional sections and an ap-
pendix. Section 2 gives a brief overview of miniKanren, and
presents a simple unary arithmetic system in miniKanren
using Peano numerals; these arithmetic relations are used
in several of the examples. Readers unfamiliar with logic
programming should carefully study this material and the
miniKanren implementation in the appendix before reading
section 3. (For a gentle introduction to logic programming,
we recommend Clocksin [3].) Section 3 is the heart of the
paper; it introduces pseudo-variadic relations, and shows
how some pseudo-variadic relations can be defined using the
foldr o or foldl o relational abstractions. Section 4 discusses
double-pseudo-variadic relations and the foldr ∗o and foldl ∗o

relational abstractions. In section 5 we conclude. The ap-
pendix presents an R5RS-compliant [9] implementation of
miniKanren.

105

2. miniKanren Overview
This section is divided into two parts. Part one introduces
the three miniKanren operators and demonstrates their be-
havior. Part two defines several arithmetic relations that are
used in later examples, and allows the reader to become fa-
miliar with fixed-arity relations before considering the more
complicated pseudo-variadic relations.

Our code uses the following typographic conventions.
Lexical variables are in italic, forms are in boldface, and
quoted symbols are in sans serif. Quotes, quasiquotes, and
unquotes are suppressed, and quoted or quasiquoted lists
appear with bold parentheses—for example (()) and ((x � x))
are entered as ’() and ‘(x . ,x), respectively. By our con-
vention, names of relations end with a superscript o—for
example plus o, which is entered as pluso. miniKanren’s
relational operators do not follow this convention: ≡ (en-
tered as ==), conde (entered as conde), and fresh. Simi-
larly, (run5 (q) body) and (run∗ (q) body) are entered as
(run 5 (q) body) and (run #f (q) body), respectively.

2.1 Introduction to miniKanren

miniKanren, like Schelog [15], is an embedding of logic
programming in Scheme. miniKanren extends Scheme with
three operators: ≡, conde, and fresh. There is also run,
which serves as an interface between Scheme and miniKan-
ren, and whose value is a list.

fresh, which syntactically looks like lambda, introduces
new variables into its scope; ≡ unifies two values. Thus

(fresh (x y z) (≡ x z) (≡ 3 y))

would associate x with z and y with 3. This, however, is not
a legal miniKanren program—we must wrap a run around
the entire expression.

(run1 (q) (fresh (x y z) (≡ x z) (≡ 3 y))) ⇒ ((0))

The value returned is a list containing the single value 0 ;
we say that 0 is the reified value of the fresh variable q . q
also remains fresh in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ ((0))

We can get back other values, of course.

(run1 (y)
(fresh (x z)

(≡ x z)
(≡ 3 y)))

(run1 (q)
(fresh (x z)

(≡ x z)
(≡ 3 z)
(≡ q x)))

(run1 (y)
(fresh (x y)

(≡ 4 x)
(≡ x y))

(≡ 3 y))

Each of these examples returns ((3)); in the rightmost exam-
ple, the y introduced by fresh is different from the y intro-
duced by run. run can also return the empty list, indicating
that there are no values.

(run1 (x) (≡ 4 3)) ⇒ (())

We use conde to get several values—syntactically, conde

looks like cond but without ⇒ or else. For example,

(run2 (q)
(fresh (x y z)

(conde

((≡ ((x y z x)) q))
((≡ ((z y x z)) q))))) ⇒

((((0 1 2 0)) ((0 1 2 0))))

Although the two conde-clauses are different, the values
returned are identical. This is because distinct reified fresh
variables are assigned distinct numbers, increasing from left
to right—the numbering starts over again from zero within
each value, which is why the reified value of x is 0 in the
first value but 2 in the second value.

Here is a simpler example using conde.

(run5 (q)
(fresh (x y z)

(conde

((≡ a x) (≡ 1 y) (≡ d z))
((≡ 2 y) (≡ b x) (≡ e z))
((≡ f z) (≡ c x) (≡ 3 y)))

(≡ ((x y z)) q))) ⇒
((((a 1 d)) ((b 2 e)) ((c 3 f))))

The superscript 5 denotes the maximum length of the re-
sultant list. If the superscript ∗ is used, then there is no
maximum imposed. This can easily lead to infinite loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop)))))

Had the ∗ been replaced by a non-negative integer n, then
a list of n alternating #f’s and #t’s would be returned. The
conde succeeds while associating q with #f, which accounts
for the first value. When getting the second value, the second
conde-clause is tried, and the association made between q
and #f is forgotten—we say that q has been refreshed. In the
third conde-clause, q is refreshed once again.

We now look at several interesting examples that rely on
any o.

(define any o

(lambda (g)
(conde

(g)
((any o g)))))

any o tries g an unbounded number of times.
Here is the first example using any o.

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

This example does not terminate, because the call to any o

succeeds an unbounded number of times. If ∗ is replaced by
5, then instead we get ((#t #f #f #f #f)). (The user should not
be concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒

((1 2 3 1 2 3 1 2 3 1))

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence will be repeated indefinitely.

106 Scheme and Functional Programming, 2006

Here is always o,

(define always o (any o (≡ #f #f)))

along with two run expressions that use it.

(run1 (x)
(≡ #t x)
always o

(≡ #f x))

(run5 (x)
(conde

((≡ #t x))
((≡ #f x)))

always o

(≡ #f x))

The left-hand expression diverges—this is because always o

succeeds an unbounded number of times, and because
(≡ #f x) fails each of those times.

The right-hand expression returns a list of five #f’s. This
is because both conde-clauses are tried, and both succeed.
However, only the second conde-clause contributes to the
values returned in this example. Nothing changes if we swap
the two conde-clauses. If we change the last expression to
(≡ #t x), we instead get a list of five #t’s.

Even if some conde-clauses loop indefinitely, other
conde-clauses can contribute to the values returned by a
run expression. (We are not concerned with Scheme expres-
sions looping indefinitely, however.) For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns ((1 2 3)); replacing run3 with run4 causes divergence,
however, since there are only three values, and since never o

loops indefinitely.

2.2 Peano Arithmetic

The arithmetic examples in this paper use Peano represen-
tation of numbers (technically, Peano numerals). The ad-
vantage of this representation is that we can use ≡ both to
construct and to match against numbers.

The Peano representation of zero is z, while the immedi-
ate successor to a Peano number n is represented as ((s n)).
For example, one is the immediate successor of zero—the
Peano representation of one is therefore ((s z)). Two is the
immediate successor of one, so the Peano representation of
two is ((s ((s z)))).

Typographically, we indicate a Peano number using cor-
ner brackets—for example, p3q for ((s ((s ((s z)))))). We repre-
sent ((s x)) as px+1q, ((s ((s x)))) as px+2q, and so forth, where
x is a variable or a reified variable (that is, a symbol).

Here is plus o, which adds two Peano numbers.

(define plus o

(lambda (n m sum)
(conde

((≡ p0q n) (≡ m sum))
((fresh (x y)

(≡ px+1q n)
(≡ py+1q sum)
(plus o x m y))))))

plus o allows us to find all pairs of numbers that sum to six.

(run∗ (q)
(fresh (n m)

(plus o n m p6q)
(≡ ((n m)) q))) ⇒

((((p0q p6q))
((p1q p5q))
((p2q p4q))
((p3q p3q))
((p4q p2q))
((p5q p1q))
((p6q p0q))))

Let us define minus o using plus o, and use it to find ten
pairs of numbers whose difference is six.

(define minus o

(lambda (n m k)
(plus o m k n)))

(run10 (q)
(fresh (n m)

(minus o n m p6q)
(≡ ((n m)) q))) ⇒

((((p6q p0q))
((p7q p1q))
((p8q p2q))
((p9q p3q))
((p10q p4q))
((p11q p5q))
((p12q p6q))
((p13q p7q))
((p14q p8q))
((p15q p9q))))

We have chosen to have subtraction of a larger number
from a smaller number fail, rather than be zero.

(run∗ (q) (minus o p5q p6q q)) ⇒ (())

We will also need even o and positive o in several examples
below.

(define even o

(lambda (n)
(conde

((≡ p0q n))
((fresh (m)

(≡ pm+2q n)
(even o m))))))

(define positive o

(lambda (n)
(fresh (m)

(≡ pm+1q n))))

even o and positive o ensure that their arguments repre-
sent even and positive Peano numbers, respectively.

(run4 (q) (even o q)) ⇒ ((p0q p2q p4q p6q))

(run∗ (q) (positive o q)) ⇒ ((p 0+1q))

The value p 0+1q shows that n + 1 is positive for every
number n.

Scheme and Functional Programming, 2006 107

3. Pseudo-Variadic Relations
Just as a Scheme function can be variadic, so can a miniKan-
ren relation. For example, it is possible to define a variadic
version of plus o using Scheme’s var-args feature. We must
distinguish between the arguments whose values are to be
added and the single argument representing the sum of those
values. The simplest solution is to make the first argument
represent the sum.

(define variadic-plus ∗o

(lambda (out . in∗)
(plus ∗o in∗ out)))

(define plus ∗o

(lambda (in∗ out)
(conde

((≡ (()) in∗) (≡ p0q out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(plus o a res out)
(plus ∗o d res))))))

Here we use variadic-plus ∗o to find the sum of three, four,
and two:

(run∗ (q) (variadic-plus ∗o q p3q p4q p2q)) ⇒ ((p9q))

Let us find the number that, when added to four, one, and
two, produces nine.

(run∗ (q) (variadic-plus ∗o p9q p4q q p1q p2q)) ⇒ ((p2q))

variadic-plus ∗o is not as general as it could be, however.
We cannot, for example, use variadic-plus ∗o to find all
sequences of numbers that sum to five. This is because in∗

must be an actual list, and cannot be a variable representing
a list. The solution is simple—just use plus ∗o in place of
variadic-plus ∗o.

plus ∗o, which does not use Scheme’s var-args functional-
ity, takes exactly two arguments. The first argument must be
a list of numbers, or a variable representing a list of numbers.
The second argument represents the sum of the numbers in
the first argument, and can be either a number or a variable
representing a number.

Variadic relations, such as variadic-plus ∗o, are defined us-
ing pseudo-variadic helper relations, such as plus ∗o. Hence-
forth, we focus exclusively on the more flexible pseudo-
variadic relations, keeping in mind that each pseudo-variadic
relation can be paired with a variadic relation.

To add three, four, and two using plus ∗o, we write

(run∗ (q) (plus ∗o ((p3q p4q p2q)) q)) ⇒ ((p9q))

Here is another way to add three, four, and two.

(run1 (q)
(fresh (x y z)

(plus ∗o x q)
(≡ ((p3q � y)) x)
(≡ ((p4q � z)) y)
(≡ ((p2q � (()))) z))) ⇒ ((p9q))

Instead of passing a fully instantiated list of numbers as
the first argument to plus ∗o, we pass the fresh variable x—
only afterwards do we instantiate x . Each call to ≡ further
constrains the possible values of x , and consequently con-
strains the possible values of q . This technique of constrain-
ing the first argument to a pseudo-variadic relation through
repeated calls to ≡ is similar to the partial application of a

curried function—the plus ∗o relation can be considered both
curried and (pseudo) variadic.

Replacing run1 with run2 causes the expression to di-
verge. This is because there is no second value to be found.
Although (plus ∗o x q) succeeds an unbounded number of
times, after each success one of the calls to ≡ fails, result-
ing in infinitely many failures without a single success, and
therefore divergence. If the call to plus ∗o is made after the
calls to ≡, the expression terminates even when using run∗.

(run∗ (q)
(fresh (x y z)

(≡ ((p2q � (()))) z)
(≡ ((p3q � y)) x)
(≡ ((p4q � z)) y)
(plus ∗o x q))) ⇒ ((p9q))

We have also reordered the calls to ≡ to illustrate that
the list associated with x need not be extended in left-
to-right order—this reordering does not affect the behavior
of the expression. The three calls to ≡ fully instantiate x ;
instead, we could have associated z with a pair whose cdr is
a fresh variable, thereby leaving the variable x only partially
instantiated. By the end of section 3, the reader should be
able to predict the effect of this change on the behavior of
the run∗ expression.

Here is a simpler example—we prove there is no sequence
of numbers that begins with five whose sum is three.

(run∗ (q) (plus ∗o ((p5q � q)) p3q)) ⇒ (())

Returning to the problem that led us to use plus ∗o, we
generate lists of numbers whose sum is five.

(run10 (q) (plus ∗o q p5q)) ⇒
((((p5q))
((p5q p0q))
((p5q p0q p0q))
((p0q p5q))
((p1q p4q))
((p2q p3q))
((p3q p2q))
((p4q p1q))
((p5q p0q p0q p0q))
((p5q p0q p0q p0q p0q))))

There are infinitely many values, since a list can contain
arbitrarily many zeros. We will consider the problem of
generating all lists of positive numbers whose sum is five,
but first we introduce a convenient abstraction for defining
pseudo-variadic relations.

3.1 The foldr o Abstraction

We can define certain pseudo-variadic relations using the
foldr o relational abstraction. foldr o is derived from foldr , a
standard abstraction for defining variadic functions in terms
of binary ones [8].

(define foldr
(lambda (f)

(lambda (base-value)
(letrec ((foldr (lambda (in∗)

(cond
((null? in∗) base-value)
(else (f (car in∗)

(foldr (cdr in∗))))))))
foldr))))

108 Scheme and Functional Programming, 2006

Here we use foldr o to define plusr ∗o, which behaves like
plus ∗o. (For another approach to higher order relations such
as foldr o, see Naish [13] and O’Keefe [14].)

(define foldr o

(lambda (rel o)
(lambda (base-value)

(letrec ((foldr o (lambda (in∗ out)
(conde

((≡ (()) in∗) (≡ base-value out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(rel o a res out)
(foldr o d res)))))))

foldr o))))

(define plusr ∗o ((foldr o plus o) p0q))

The first argument to foldr must be a binary function,
whereas the first argument to foldr o must be a ternary
relation. The values of rel o and base-value do not change
in the recursive call to foldr o—this allows us to pass in
rel o and base-value before passing in in∗ and out . We make
a distinction between the rel o and base-value arguments:
although base-value might be a variable, the value of rel o

must be a miniKanren relation, and therefore a Scheme
function.

We use positive-plusr ∗o to ensure that we add only posi-
tive numbers.

(define positive-plusr ∗o

((foldr o (lambda (a res out)
(fresh ()

(positive o a)
(plus o a res out))))

p0q))

Finally, we have the sixteen lists of positive numbers whose
sum is five.

(run∗ (q) (positive-plusr ∗o q p5q)) ⇒
((((p5q))
((p1q p4q))
((p2q p3q))
((p1q p1q p3q))
((p3q p2q))
((p1q p2q p2q))
((p4q p1q))
((p2q p1q p2q))
((p1q p3q p1q))
((p1q p1q p1q p2q))
((p2q p2q p1q))
((p3q p1q p1q))
((p1q p1q p2q p1q))
((p1q p2q p1q p1q))
((p2q p1q p1q p1q))
((p1q p1q p1q p1q p1q))))

Let us consider another pseudo-variadic relation; positive-
even-plusr ∗o succeeds if its first argument represents a list
of positive numbers whose sum is even.

(define positive-even-plusr ∗o

(lambda (in∗ out)
(fresh ()

(even o out)
(positive-plusr ∗o in∗ out))))

Here are the first ten values returned by positive-even-
plusr ∗o.

(run10 (q)
(fresh (x y)

(≡ ((x y)) q)
(positive-even-plusr ∗o x y))) ⇒

(((((()) p0q))
((((p2q)) p2q))
((((p1q p1q)) p2q))
((((p4q)) p4q))
((((p1q p3q)) p4q))
((((p2q p2q)) p4q))
((((p3q p1q)) p4q))
((((p1q p1q p2q)) p4q))
((((p1q p2q p1q)) p4q))
((((p2q p1q p1q)) p4q))))

Replacing run10 with run∗ causes divergence, since there
are infinitely many values.

Let us consider another pseudo-variadic relation defined
using foldr o. Here is append o, which appends two lists, and
its pseudo-variadic variant appendr ∗o.

(define append o

(lambda (l s out)
(conde

((≡ (()) l) (≡ s out))
((fresh (a d res)

(≡ ((a � d)) l)
(≡ ((a � res)) out)
(append o d s res))))))

(define appendr ∗o ((foldr o append o) (())))

Here are four examples of appendr ∗o. In the first example,
we use appendr ∗o simply to append two lists.

(run∗ (q) (appendr ∗o ((((a b c)) ((d e)))) q)) ⇒ ((((a b c d e))))

In the second example we infer for which value of q the
list ((a b c d � q)) is equal to the concatenation of the lists
((a b c)), ((d e)), and ((f g)).

(run∗ (q) (appendr ∗o ((((a b c)) ((d e)) ((f g)))) ((a b c d � q))))
⇒ ((((e f g))))

The third example is more interesting—the contents of
the second of three lists being appended can be inferred
from the second argument to appendr ∗o.

(run∗ (q) (appendr ∗o ((((a b c)) q ((g h)))) ((a b c d e f g h))))
⇒ ((((d e f))))

The final example shows a few of the lists of lists whose
contents, when appended, are ((2 3 d e)).

(run10 (q) (appendr ∗o ((((a b)) ((c)) ((1)) � q)) ((a b c 1 2 3 d e))))
⇒

((((((2 3 d e))))
((((2 3 d e)) (())))
((((2 3 d e)) (()) (())))
(((()) ((2 3 d e))))
((((2)) ((3 d e))))
((((2 3)) ((d e))))
((((2 3 d)) ((e))))
((((2 3 d e)) (()) (()) (())))
((((2 3 d e)) (()) (()) (()) (())))
(((()) ((2 3 d e)) (())))))

Scheme and Functional Programming, 2006 109

Replacing run10 with run∗ causes the last expression to di-
verge, since there are infinitely many values that contain the
empty list—by using pair-appendr ∗o instead of appendr ∗o,
we filter out these values.

(define pair o

(lambda (p)
(fresh (a d)

(≡ ((a � d)) p))))

(define pair-appendr ∗o

((foldr o (lambda (a res out)
(fresh ()

(pair o a)
(append o a res out))))

(())))

Now let us re-evaluate the previous example.

(run∗ (q)
(pair-appendr ∗o ((((a b)) ((c)) ((1)) � q)) ((a b c 1 2 3 d e)))) ⇒

((((((2 3 d e))))
((((2)) ((3 d e))))
((((2 3)) ((d e))))
((((2 3 d)) ((e))))
((((2)) ((3)) ((d e))))
((((2)) ((3 d)) ((e))))
((((2 3)) ((d)) ((e))))
((((2)) ((3)) ((d)) ((e))))))

These eight values are the only ones that do not include the
empty list.

3.2 The foldl o Abstraction

Previously we defined pseudo-variadic relations with the
foldr o relational abstraction. We can also define certain
pseudo-variadic relations using the foldl o relational abstrac-
tion, which is derived from the standard foldl function; like
foldr , foldl is used to define variadic functions in terms of
binary ones.

(define foldl
(lambda (f)

(letrec
((foldl

(lambda (acc)
(lambda (in∗)

(cond
((null? in∗) acc)
(else ((foldl (f acc (car in∗)))

(cdr in∗))))))))
foldl)))

Here we use foldl o to define plusl ∗o and appendl ∗o, which
are similar to plusr ∗o and appendr ∗o, respectively.

(define foldl o

(lambda (rel o)
(letrec

((foldl o (lambda (acc)
(lambda (in∗ out)

(conde

((≡ (()) in∗) (≡ acc out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(rel o acc a res)
((foldl o res) d out))))))))

foldl o)))

(define plusl ∗o ((foldl o plus o) p0q))

(define appendl ∗o ((foldl o append o) (())))

As we did with foldr o, we separate the rel o and acc argu-
ments from the in∗ and out arguments.

We have defined pseudo-variadic versions of plus o using
both foldr o and foldl o; these definitions differ in their diver-
gence behavior. Consider this example, which uses plusr ∗o.

(run1 (q) (plusr ∗o ((p4q q p3q)) p5q)) ⇒ (())

Replacing plusr ∗o with plusl ∗o causes the expression to
diverge. foldl o passes the fresh variable res as the third
argument to the ternary relation, while foldr o instead passes
the out variable, which in this example is fully instantiated.
This accounts for the difference in divergence behavior—the
relation called by foldr o has additional information that can
lead to termination.

It is possible to use foldl o to define positive-plusl ∗o,
positive-even-plusl ∗o, and pair-appendl ∗o. Some pseudo-
variadic relations can be defined using foldl o, but not foldr o.
For example, here is subsetl o, which generates subsets of a
given set (where sets are represented as lists).

(define ess o

(lambda (in∗ x out)
(conde

((≡ (()) in∗) (≡ ((((x)))) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (≡ ((x � a)) â))

((≡ ((a � d̂)) out) (ess o d x d̂))))))))

(define subsetl o ((foldl o ess o) (())))

Here we use subsetl o to find all the subsets of the set
containing a, b, and c.

(run∗ (q) (subsetl o ((a b c)) q)) ⇒
((((((c b a)))) ((((b a)) ((c)))) ((((c a)) ((b)))) ((((a)) ((c b)))) ((((a)) ((b)) ((c))))))

It is possible to infer the original set from which a given
subset has been generated.

(run1 (q) (subsetl o q ((((a d)) ((c)) ((b)))))) ⇒ ((((d c b a))))

Replacing run1 with run2 yields two values: ((d c b a)) and
((d c a b)). Unfortunately, these values are duplicates—they
represent the same set. It is possible to eliminate these dupli-
cate sets (for example, by using Prolog III-style disequality
constraints [4]), but the techniques involved are not directly
related to pseudo-variadic relations.

Here is partition-suml o, whose definition is very similar
to that of subsetl o. Like subsetl o, partition-suml o cannot be
defined using foldr o.

(define pes o

(lambda (in∗ x out)
(conde

((≡ (()) in∗) (≡ ((x)) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (plus o x a â))

((≡ ((a � d̂)) out) (pes o d x d̂))))))))

(define partition-suml o ((foldl o pes o) (())))

110 Scheme and Functional Programming, 2006

partition-suml o partitions a set of numbers, and returns
another set containing the sums of the numbers in the
various partitions. (This problem was posed in a July 5, 2006
post on the comp.lang.scheme newsgroup [5]). An example
helps clarify the problem.

(run∗ (q) (partition-suml o ((p1q p2q p5q p9q)) q)) ⇒
((((p8q p9q))
((p3q p5q p9q))
((p17q))
((p12q p5q))
((p3q p14q))
((p10q p2q p5q))
((p1q p2q p5q p9q))
((p6q p2q p9q))
((p1q p11q p5q))
((p1q p7q p9q))
((p1q p2q p14q))
((p15q p2q))
((p6q p11q))
((p10q p7q))
((p1q p16q))))

Consider the value ((p15q p2q)). We obtain the p15q by adding
p1q, p5q, and p9q, while the p2q is left unchanged.

We can infer the original set of numbers, given a specific
final value.

(run10 (q) (partition-suml o q ((p3q)))) ⇒
((((p3q))
((p3q p0q))
((p2q p1q))
((p3q p0q p0q))
((p1q p2q))
((p2q p0q p1q))
((p3q p0q p0q p0q))
((p2q p1q p0q))
((p0q p3q))
((p1q p0q p2q))))

There are infinitely many values containing zero—one way
of eliminating these values is to use positive-partition-suml o.

(define positive-pes o

(lambda (in∗ x out)
(fresh ()

(positive o x)
(conde

((≡ (()) in∗) (≡ ((x)) out))

((fresh (a d â d̂)
(≡ ((a � d)) in∗)
(conde

((≡ ((â � d)) out) (plus o x a â))

((≡ ((a � d̂)) out) (positive-pes o d x d̂)))))))))

(define positive-partition-suml o ((foldl o positive-pes o) (())))

(run4 (q) (positive-partition-suml o q ((p3q)))) ⇒
((((p3q))
((p2q p1q))
((p1q p2q))
((p1q p1q p1q))))

We have eliminated values containing zeros, but we still
are left with duplicate values—worse, the last value is not
even a set. As before, we could use disequality constraints or

other techniques to remove these undesired values. Regard-
less of whether we use these techniques, the previous run
expression will diverge if we replace run4 with run5; this
divergence is due to our use of foldl o.

3.3 When foldr o and foldl o do not work

Consider minusr ∗o, which is a pseudo-variadic minus o de-
fined using plusr ∗o. Unlike the pseudo-variadic addition rela-
tions, minusr ∗o fails when in∗ is the empty list. Also, when
in∗ contains only a single number, that number must be
zero. This is because the negation of any positive number is
negative, and because Peano numbers only represent non-
negative integers. These special cases prevent us from defin-
ing minusr ∗o using foldr o or foldl o.

(define minusr ∗o

(lambda (in∗ out)
(conde

((≡ ((p0q)) in∗) (≡ p0q out))
((fresh (a d res)

(≡ ((a � d)) in∗)
(pair o d)
(minus o a res out)
(plusr ∗o d res))))))

Here we use minusr ∗o to generate lists of numbers that,
when subtracted from seven, yield three.

(run14 (q) (minusr ∗o ((p7q � q)) p3q)) ⇒
((((p4q))
((p4q p0q))
((p4q p0q p0q))
((p0q p4q))
((p1q p3q))
((p2q p2q))
((p3q p1q))
((p4q p0q p0q p0q))
((p4q p0q p0q p0q p0q))
((p0q p4q p0q))
((p1q p3q p0q))
((p2q p2q p0q))
((p3q p1q p0q))
((p4q p0q p0q p0q p0q p0q))))

The values containing zero are not very interesting—let
us filter out those values by using positive-minusr ∗o.

(define positive-minusr ∗o

(lambda (in∗ out)
(fresh (a d res)

(≡ ((a � d)) in∗)
(positive o a)
(minus o a res out)
(positive-plusr ∗o d res))))

Now we can use run∗ instead of run14, since there are
only finitely many values.

(run∗ (q) (positive-minusr ∗o ((p7q � q)) p3q)) ⇒
((((p4q))
((p1q p3q))
((p2q p2q))
((p3q p1q))
((p1q p1q p2q))
((p1q p2q p1q))
((p2q p1q p1q))
((p1q p1q p1q p1q))))

Scheme and Functional Programming, 2006 111

As might be expected, we could use plusl ∗o to define the
relations minusl ∗o and positive-minusl ∗o.

Here is positive ∗o, another pseudo-variadic relation that
cannot be defined using foldr o or foldl o; this is because
positive ∗o takes only one argument.

(define positive ∗o

(lambda (in∗)
(conde

((≡ (()) in∗))
((fresh (a d)

(≡ ((a � d)) in∗)
(positive o a)
(positive ∗o d))))))

(run5 (q) (positive ∗o q)) ⇒
(((())
((p 0+1q))
((p 0+1q p 1+1q))
((p 0+1q p 1+1q p 2+1q))
((p 0+1q p 1+1q p 2+1q p 3+1q))))

4. Double-Pseudo-Variadic Relations
A pseudo-variadic relation takes a list, or a variable repre-
senting a list, as its first argument; a double-pseudo-variadic
relation takes a list of lists, or a variable representing a list of
lists, as its first argument. Let us define plusr ∗∗o, the double-
pseudo-variadic version of plusr ∗o. We define plusr ∗∗o using
the foldr ∗o relational abstraction.

(define foldr ∗o

(lambda (rel o)
(lambda (base-value)

(letrec ((foldr ∗o (lambda (in∗∗ out)
(conde

((≡ (()) in∗∗) (≡ base-value out))
((fresh (dd)

(≡ (((()) � dd)) in∗∗)
(foldr ∗o dd out)))

((fresh (a d dd res)
(≡ ((((a � d)) � dd)) in∗∗)
(rel o a res out)
(foldr ∗o ((d � dd)) res)))))))

foldr ∗o))))

(define plusr ∗∗o ((foldr ∗o plus o) p0q))

As with plusr ∗o, we can use plusr ∗∗o to add three, four,
and two.

(run∗ (q) (plusr ∗∗o ((((p3q p4q p2q)))) q)) ⇒ ((p9q))

plusr ∗∗o allows us to add three, four, and two in more
than one way, by partitioning the list of numbers to be added
into various sublists, which can include the empty list.

(run∗ (q) (plusr ∗∗o (((()) ((p3q p4q)) (()) ((p2q)))) q)) ⇒ ((p9q))

In the previous section we used plusr ∗o to generate lists of
numbers whose sum is five; here we use plusr ∗∗o to generate
lists of numbers whose sum is three.

(run10 (q) (plusr ∗∗o ((q)) p3q)) ⇒
((((p3q))
((p3q p0q))
((p3q p0q p0q))
((p0q p3q))

((p1q p2q))
((p2q p1q))
((p3q p0q p0q p0q))
((p3q p0q p0q p0q p0q))
((p0q p3q p0q))
((p1q p2q p0q))))

There are infinitely many such lists, since each list can
contain an arbitrary number of zeros.

As we did with plusr ∗o, let us use plusr ∗∗o to prove that
there is no sequence of numbers that begins with five whose
sum is three.

(run1 (q) (plusr ∗∗o ((((p5q)) q)) p3q)) ⇒ (())

This expression terminates because plusr ∗∗o calls
(plus o p5q res p3q), which immediately fails.

Swapping the positions of the fresh variable q and the
list containing five yields the expression

(run1 (q) (plusr ∗∗o ((q ((p5q)))) p3q))

which diverges. q represents a list of numbers—since each
list can contain arbitrarily many zeros, there are infinitely
many such lists whose sum is less than or equal to three.
For each such list, plusr ∗∗o sums the numbers in the list,
and then adds five to that sum; this fails, of course, since
the new sum is greater than three. Since there are infinitely
many lists, and therefore infinitely many failures without a
single success, the expression diverges.

If we were to restrict q to a list of positive numbers, the
previous expression would terminate.

(define positive-plusr ∗∗o

((foldr ∗o (lambda (a res out)
(fresh ()

(positive o a)
(plus o a res out))))

p0q))

(run1 (q) (positive-plusr ∗∗o ((q ((p5q)))) p3q)) ⇒ (())

We can now generate all the lists of positive numbers
whose sum is three.

(run∗ (q) (positive-plusr ∗∗o ((q)) p3q)) ⇒
((((p3q))
((p2q p1q))
((p1q p2q))
((p1q p1q p1q))))

The following expression returns all lists of positive num-
bers containing five that sum to eight.

(run∗ (q)
(fresh (x y)

(positive-plusr ∗∗o ((x ((p5q)) y)) p8q)
(appendr ∗o ((x ((p5q)) y)) q))) ⇒

((((p5q p3q))
((p5q p2q p1q))
((p5q p1q p2q))
((p5q p1q p1q p1q))
((p1q p5q p2q))
((p1q p5q p1q p1q))
((p2q p5q p1q))
((p1q p1q p5q p1q))
((p3q p5q))
((p1q p2q p5q))
((p2q p1q p5q))
((p1q p1q p1q p5q))))

112 Scheme and Functional Programming, 2006

Here is a more complicated example—we want to find all
lists of numbers that sum to twenty-five and satisfy certain
additional constraints. The list must begin with a list w of
positive numbers, followed by the number three, followed by
any single positive number x , the number four, a list y of
positive numbers, the number five, and a list z of positive
numbers.

(run∗ (q)
(fresh (w x y z in∗∗)

(≡ ((w ((p3q x p4q)) y ((p5q)) z)) in∗∗)
(positive-plusr ∗∗o in∗∗ p25q)
(appendr ∗o in∗∗ q)))

Here is a list of the first four values.

((((p3q p1q p4q p5q p12q))
((p3q p1q p4q p5q p1q p11q))
((p3q p1q p4q p5q p2q p10q))
((p3q p2q p4q p5q p11q))))

For the curious, the 7,806th value is

((p1q p3q p1q p4q p5q p11q))

and the 4,844th value is

((p3q p1q p4q p1q p5q p9q p2q))

foldr ∗o is not the only double-pseudo-variadic relational
abstraction; here is foldl ∗o, which we use to define plusl ∗∗o

and positive-plusl ∗∗o.

(define foldl ∗o

(lambda (rel o)
(letrec

((foldl ∗o (lambda (acc)
(lambda (in∗∗ out)

(conde

((≡ (()) in∗∗) (≡ acc out))
((fresh (dd)

(≡ (((()) � dd)) in∗∗)
((foldl ∗o acc) dd out)))

((fresh (a d dd res)
(≡ ((((a � d)) � dd)) in∗∗)
(rel o acc a res)
((foldl ∗o res) ((d � dd)) out))))))))

foldl ∗o)))

(define plusl ∗∗o ((foldl ∗o plus o) p0q))

(define positive-plusl ∗∗o

((foldl ∗o (lambda (acc a res)
(fresh ()

(positive o a)
(plus o acc a res))))

p0q))

Let us revisit an example demonstrating positive-plusr ∗∗o;
we replace positive-plusr ∗∗o with positive-plusl ∗∗o, and run∗

with run4.

(run4 (q) (positive-plusl ∗∗o ((q)) p3q)) ⇒

((((p3q))
((p1q p2q))
((p2q p1q))
((p1q p1q p1q))))

We get back the same values as before, although in a dif-
ferent order. If we replace run4 with run5, however, the
expression diverges. This should not be surprising, since we
have already seen a similar difference in divergence behavior
between plusr ∗o and plusl ∗o.

Finally, let us consider a double-pseudo-variadic relation
that cannot be defined using foldr ∗o or foldl ∗o. Here is
minusr ∗∗o, the generalization of minusr ∗o.

(define minusr ∗∗o

(lambda (in∗∗ out)
(fresh (in∗)

(appendr ∗o in∗∗ in∗)
(minusr ∗o in∗ out))))

The definition is made simple by the call to appendr ∗o—why
do we not use this technique when defining other double-
pseudo-variadic relations? Because the call to appendr ∗o can
succeed an unbounded number of times when in∗∗ is fresh or
partially instantiated, which can easily lead to divergence:

(run1 (q) (minusr ∗∗o ((((p3q)) q)) p5q))

diverges because the call to appendr ∗o keeps succeeding, and
because after each success the call to minusr ∗o fails.

Of course not every use of minusr ∗∗o results in diver-
gence. Let us find ten lists of numbers that contain seven
and whose difference is three.

(run10 (q)
(fresh (x y)

(≡ ((x ((p7q)) y)) q)
(minusr ∗∗o q p3q))) ⇒

(((((()) ((p7q)) ((p4q))))
(((()) ((p7q)) ((p0q p4q))))
(((()) ((p7q)) ((p1q p3q))))
(((()) ((p7q)) ((p2q p2q))))
(((()) ((p7q)) ((p4q p0q))))
(((()) ((p7q)) ((p3q p1q))))
(((()) ((p7q)) ((p0q p0q p4q))))
(((()) ((p7q)) ((p0q p1q p3q))))
(((()) ((p7q)) ((p0q p2q p2q))))
(((()) ((p7q)) ((p0q p4q p0q))))))

These values give the impression that x is always asso-
ciated with the empty list, which is not true. For exam-
ple, when we replace run10 with run70, then the twenty-
third and seventieth values are ((((p10q)) ((p7q)) (()))) and
((((p11q)) ((p7q)) ((p1q)))), respectively.

Let us exclude values in which sublists contain zeros, and
display the concatenation of the sublists to make the results
more readable.

(run10 (q)
(fresh (x y in∗∗)

(≡ ((x ((p7q)) y)) in∗∗)
(minusr ∗∗o in∗∗ p3q)
(appendr ∗o in∗∗ q)
(positive ∗o q))) ⇒

((((p7q p4q))
((p7q p1q p3q))
((p7q p2q p2q))
((p7q p3q p1q))
((p7q p1q p1q p2q))
((p7q p1q p2q p1q))
((p7q p2q p1q p1q))
((p10q p7q))
((p7q p1q p1q p1q p1q))
((p11q p7q p1q))))

Scheme and Functional Programming, 2006 113

Of course there are still infinitely many values, even after
filtering out lists containing zeros.

Finally, let us replace the second argument to minusr ∗∗o

with a fresh variable.

(run10 (q)
(fresh (x y in∗ in∗∗ out)

(≡ ((in∗ out)) q)
(≡ ((x ((p7q)) y)) in∗∗)
(minusr ∗∗o in∗∗ out)
(appendr ∗o in∗∗ in∗)
(positive ∗o in∗))) ⇒

((((((p7q p1q)) p6q))
((((p7q p2q)) p5q))
((((p7q p3q)) p4q))
((((p7q p4q)) p3q))
((((p7q p5q)) p2q))
((((p7q p6q)) p1q))
((((p7q p7q)) p0q))
((((p7q p1q p1q)) p5q))
((((p7q p1q p2q)) p4q))
((((p7q p2q p1q)) p4q))))

When we replace run10 with run30, the thirtieth value is

((((p 0+7q p7q)) 0))

This value shows that (n + 7)− 7 = n for every n.

5. Conclusions
We have seen how to define both variadic and pseudo-
variadic relations in miniKanren, an embedding of logic
programming in Scheme. A variadic relation is defined using
Scheme’s var-args facility, and can take a variable number of
arguments. A pseudo-variadic relation takes two arguments,
the first of which is a list or a variable representing a list; the
ability to pass a fresh variable as the first argument makes
a pseudo-variadic relation more flexible than its variadic
equivalent.

Just as certain variadic Scheme functions can be defined
using the foldr or foldl abstractions, certain pseudo-variadic
relations can be defined using the foldr o or foldl o relational
abstractions. For example, pseudo-variadic versions of plus o

that add arbitrarily many numbers can be defined using
either relational abstraction. Another example is subsetl o,
which is defined using foldl o but cannot be redefined us-
ing foldr o. Even those pseudo-variadic relations that can be
defined using both relational abstractions may exhibit differ-
ent divergence behavior when using one abstraction instead
of the other. And some pseudo-variadic relations, such as
minusr ∗o, cannot be defined using either foldr o or foldl o.

We have also seen how to define double-pseudo-variadic
relations, which are a generalization of pseudo-variadic re-
lations. A double-pseudo-variadic relation takes two argu-
ments, the first of which is either a list of lists or a variable
representing a list of lists. As with pseudo-variadic relations,
certain double-pseudo-variadic relations can be defined us-
ing relational abstractions—for example, plusr ∗∗o is defined
using foldr ∗o.

The benefits of using Scheme as the host language for
miniKanren are demonstrated by the ease with which we can
define higher-order relational abstractions such as foldr ∗o.
We hope the examples we have presented inspire the reader
to experiment with miniKanren, and to experience the fun
of combining relational programming with Scheme.

Acknowledgments
The implementation described in the appendix was devel-
oped with Oleg Kiselyov and Chung-chieh Shan. We are
also grateful to Michael Adams and Kyle Ross for their com-
ments on our earlier proposals for pseudo-variadic relations.
We thank Ronald Garcia, Oleg Kiselyov, Chung-chieh Shan,
Michael Adams, and the anonymous reviewers for their de-
tailed and insightful comments on drafts of this paper. We
have found Dorai Sitaram’s excellent SLATEX package invalu-
able for typesetting our code. Finally, we thank Mitchell
Wand for his encouragement and clever last-minute tweak-
ing of the implementation.

References
[1] A declarative applicative logic programming system.

http://kanren.sourceforge.net/.

[2] Baader, F., and Snyder, W. Unification theory. In
Handbook of Automated Reasoning, A. Robinson and
A. Voronkov, Eds., vol. I. Elsevier Science, 2001, ch. 8,
pp. 445–532.

[3] Clocksin, W. F. Clause and Effect: Prolog Programming
and the Working Programmer. Springer, 1997.

[4] Colmerauer, A. An introduction to Prolog III. Commun.
ACM 33, 7 (1990), 69–90.

[5] Edelstein, H. add-up problem. Message posted on
newsgroup comp.lang.scheme on July 5, 2006 07:12 EST.

[6] Friedman, D. P., Byrd, W. E., and Kiselyov, O. The
Reasoned Schemer. The MIT Press, Cambridge, MA, 2005.

[7] Henderson, F., Conway, T., Somogyi, Z., and Jeffery,
D. The Mercury language reference manual. Tech. Rep.
96/10, University of Melbourne, 1996.

[8] Jones, S. L. P. Haskell 98: Standard prelude. J. Funct.
Program. 13, 1 (2003), 103–124.

[9] Kelsey, R., Clinger, W., and Rees, J. Revised5 report on
the algorithmic language Scheme. ACM SIGPLAN Notices
33, 9 (Sept. 1998), 26–76.

[10] Kiselyov, O., Shan, C., Friedman, D. P., and Sabry,
A. Backtracking, interleaving, and terminating monad
transformers: (functional pearl). In Proceedings of the 10th
ACM SIGPLAN International Conference on Functional
Programming, ICFP 2005, Tallinn, Estonia, September 26-
28, 2005 (2005), O. Danvy and B. C. Pierce, Eds., ACM,
pp. 192–203.

[11] Moggi, E. Notions of computation and monads. Informa-
tion and Computation 93, 1 (1991), 55–92.

[12] Naish, L. Pruning in logic programming. Tech. Rep. 95/16,
Department of Computer Science, University of Melbourne,
Melbourne, Australia, June 1995.

[13] Naish, L. Higher-order logic programming in Prolog. Tech.
Rep. 96/2, Department of Computer Science, University of
Melbourne, Melbourne, Australia, Feb. 1996.

[14] O’Keefe, R. The Craft of Prolog. The MIT Press,
Cambridge, MA, 1990.

[15] Sitaram, D. Programming in Schelog.
http://www.ccs.neu.edu/home/dorai/schelog/schelog.html.

[16] Spivey, J. M., and Seres, S. Combinators for logic
programming. In The Fun of Programming, J. Gibbons
and O. de Moor, Eds. Palgrave, 2003, ch. 9, pp. 177–200.

[17] Wadler, P. The essence of functional programming. In Con-
ference Record of the Nineteenth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Al-
buquerque, New Mexico, Jan., 1992), ACM Press, pp. 1–14.

114 Scheme and Functional Programming, 2006

A. miniKanren Implementation
miniKanren evolved from Kanren [1]; its implementation
comprises three kinds of operators: functions such as unify
and reify, which take substitutions explicitly; goal construc-
tors ≡, conde, and fresh, which take substitutions implic-
itly; and the interface operator run. We represent substitu-
tions as association lists associating variables with values.

unify is based on the triangular model of substitutions
(See Baader and Snyder [2], for example.). Vectors should
not occur in arguments passed to unify, since we represent
variables as vectors.

(define unify
(lambda (u v s)

(let ((u (walk u s))
(v (walk v s)))

(cond
((eq? u v) s)
((var? u)
(cond

((var? v) (ext-s u v s))
(else (ext-s

√
u v s))))

((var? v) (ext-s
√

v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s (unify (cdr u) (cdr v) s))))
((equal? u v) s)
(else #f)))))

(define walk
(lambda (v s)

(cond
((var? v)
(let ((a (assq v s)))

(cond
(a (walk (cdr a) s))
(else v))))

(else v))))

(define ext-s
√

(lambda (x v s)
(cond

((occurs
√

x v s) #f)
(else (ext-s x v s)))))

(define occurs
√

(lambda (x v s)
(let ((v (walk v s)))

(cond
((var? v) (eq? v x))
((pair? v)
(or (occurs

√
x (car v) s) (occurs

√
x (cdr v) s)))

(else #f)))))

(define ext-s
(lambda (x v s)

(cons ((x � v)) s)))

(define empty-s (()))

(define var vector)

(define var? vector?)

reify takes a substitution and an arbitrary value, per-
haps containing variables. reify first uses walk∗ to apply the
substitution to a value and then methodically replaces any
variables with reified names.

(define reify
(letrec

((reify-s
(lambda (v s)

(let ((v (walk v s)))
(cond

((var? v) (ext-s v (reify-name (length s)) s))
((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
(else s))))))

(lambda (v s)
(let ((v (walk∗ v s)))

(walk∗ v (reify-s v empty-s))))))

(define walk∗

(lambda (w s)
(let ((v (walk w s)))

(cond
((var? v) v)
((pair? v) (cons (walk∗ (car v) s) (walk∗ (cdr v) s)))
(else v)))))

(define reify-name
(lambda (n)

(string�symbol
(string-append " " "." (number�string n)))))

A goal g is a function that maps a substitution s to an
ordered sequence of zero or more values—these values are
almost always substitutions. (For clarity, we notate lambda
as λG when creating such a function g .) Because the sequence
of values may be infinite, we represent it not as a list but as
a special kind of stream, a∞ .

Such streams contain either zero, one, or more values
[10, 16]. We use (mzero) to represent the empty stream of
values. If a is a value, then (unit a) represents the stream
containing just a. To represent a non-empty stream we use
(choice a f), where a is the first value in the stream, and
where f is a function of zero arguments. (For clarity, we
notate lambda as λF when creating such a function f .) In-
voking the function f produces the remainder of the stream.
(unit a) can be represented as (choice a (λF () (mzero))),
but the unit constructor avoids the cost of building and
taking apart pairs and invoking functions, since many goals
return only singleton streams. To represent an incomplete
stream, we create an f using (inc e), where e is an expres-
sion that evaluates to an a∞ .

(define-syntax mzero
(syntax-rules ()

(() #f)))

(define-syntax unit
(syntax-rules ()

((a) a)))

(define-syntax choice
(syntax-rules ()

((a f) (cons a f))))

(define-syntax inc
(syntax-rules ()

((e) (λF () e))))

Scheme and Functional Programming, 2006 115

To ensure that streams produced by these four a∞ con-
structors can be distinguished, we assume that a singleton
a∞ is never #f, a function, or a pair whose cdr is a function.
To discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()

((e on-zero ((â) on-one) ((a f) on-choice) ((f̂) on-inc))
(let ((a∞ e))

(cond
((not a∞) on-zero)

((procedure? a∞) (let ((f̂ a∞)) on-inc))
((and (pair? a∞) (procedure? (cdr a∞)))
(let ((a (car a∞)) (f (cdr a∞))) on-choice))

(else (let ((â a∞)) on-one)))))))

The simplest goal constructor is ≡, which returns either a
singleton stream or an empty stream, depending on whether
the arguments unify with the implicit substitution. As with
the other goal constructors, ≡ always expands to a goal,
even if an argument diverges. We avoid the use of unit and
mzero in the definition of ≡, since unify returns either a
substitution (a singleton stream) or #f (our representation
of the empty stream).

(define-syntax ≡
(syntax-rules ()

((u v)
(λG (s)

(unify u v s)))))

conde is a goal constructor that combines successive
conde-clauses using mplus∗. To avoid unwanted diver-
gence, we treat the conde-clauses as a single inc stream.
Also, we use the same implicit substitution for each conde-
clause. mplus∗ relies on mplus, which takes an a∞ and an
f and combines them (a kind of append). Using inc, how-
ever, allows an argument to become a stream, thus leading
to a relative fairness because all of the stream values will be
interleaved.

(define-syntax conde

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (s)

(inc
(mplus∗

(bind∗ (g0 s) g . . .)
(bind∗ (g1 s) ĝ . . .) . . .))))))

(define-syntax mplus∗

(syntax-rules ()
((e) e)
((e0 e . . .) (mplus e0 (λF () (mplus∗ e . . .))))))

(define mplus
(lambda (a∞ f)

(case∞ a∞

(f)
((a) (choice a f))

((a f̂) (choice a (λF () (mplus (f̂) f))))

((f̂) (inc (mplus (f) f̂))))))

If the body of conde were just the mplus∗ expression, then
the inc clauses of mplus, bind, and take would never be
reached, and there would be no interleaving of values.

fresh is a goal constructor that first lexically binds its
variables (created by var) and then, using bind∗, combines
successive goals. bind∗ is short-circuiting: since the empty
stream (mzero) is represented by #f, any failed goal causes
bind∗ to immediately return #f. bind∗ relies on bind [11, 17],
which applies the goal g to each element in a∞ . These a∞ ’s
are then merged together with mplus yielding an a∞ . (bind
is similar to Lisp’s mapcan, with the arguments reversed.)

(define-syntax fresh
(syntax-rules ()

(((x . . .) g0 g . . .)
(λG (s)

(let ((x (var x)) . . .)
(bind∗ (g0 s) g . . .))))))

(define-syntax bind∗

(syntax-rules ()
((e) e)
((e g0 g . . .)
(let ((a∞ e))

(and a∞ (bind∗ (bind a∞ g0) g . . .))))))

(define bind
(lambda (a∞ g)

(case∞ a∞

(mzero)
((a) (g a))
((a f) (mplus (g a) (λF () (bind (f) g))))
((f) (inc (bind (f) g))))))

To minimize heap allocation we create a single λG closure
for each goal constructor, and we define bind∗ and mplus∗

to manage sequences, not lists, of goal-like expressions.
run, and therefore take, converts an f to a list. We wrap

the result of (reify x s) in a list so that the case∞ in take can
distinguish a singleton a∞ from the other three a∞ types.
We could simplify run by using var to create the fresh
variable x , but we prefer that fresh be the only operator
that calls var.

(define-syntax run
(syntax-rules ()

((n (x) g0 g . . .)
(take n

(λF ()
(let ((ĝ (fresh (x)

(λG (s)
(bind∗ (g0 s) g . . .

(λG (s)
(list (reify x s))))))))

(ĝ empty-s)))))))

(define take
(lambda (n f)

(if (and n (zero? n))
(())
(case∞ (f)

(())
((a) a)
((a f) (cons (car a) (take (and n (− n 1)) f)))
((f) (take n f))))))

If the first argument to take is #f, we get the behavior of
run∗. It is trivial to write a read-eval-print loop that uses
the run∗ interface by redefining take.

116 Scheme and Functional Programming, 2006

This ends the implementation of the subset of miniKan-
ren used in this paper. Below we define the three addi-
tional goal constructors that complete the entire embedding:
conda and condu, which can be used to prune the search
tree of a program, and project, which can be used to access
the values of variables.

conda and condu correspond to the committed-choice
of Mercury, and are used in place of Prolog’s cut [7, 12].
Unlike conde, only one conda-clause or condu-clause can
return an a∞ : the first clause whose first goal succeeds. With
conda, the entire stream returned by the first goal is passed
to bind∗ (see picka). With condu, a singleton stream is
passed to bind∗—this stream contains the first value of the
stream returned by the first goal (see picku). The examples
from chapter 10 of The Reasoned Schemer [6] demonstrate
how conda and condu can be useful and the pitfalls that
await the unsuspecting reader.

(define-syntax conda

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (s)

(if ∗ (picka (g0 s) g . . .) (picka (g1 s) ĝ . . .) . . .)))))

(define-syntax condu

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (s)

(if ∗ (picku (g0 s) g . . .) (picku (g1 s) ĝ . . .) . . .)))))

(define-syntax if ∗

(syntax-rules ()
(() (mzero))
(((pick e g . . .) b . . .)
(let loop ((a∞ e))

(case∞ a∞

(if ∗ b . . .)
((a) (bind∗ a∞ g . . .))
((a f) (bind∗ (pick a a∞) g . . .))
((f) (inc (loop (f)))))))))

(define-syntax picka

(syntax-rules ()
((a a∞) a∞)))

(define-syntax picku

(syntax-rules ()
((a a∞) (unit a))))

project applies the implicit substitution to zero or more
lexical variables, rebinds those variables to the values re-
turned, and then evaluates the goal expressions in its body.
The body of a project typically includes at least one begin
expression—any expression is a goal expression if its value
is a miniKanren goal. project has many uses, such as dis-
playing the values associated with variables when tracing a
program.

(define-syntax project
(syntax-rules ()

(((x . . .) g0 g . . .)
(λG (s)

(let ((x (walk∗ x s)) . . .)
(bind∗ (g0 s) g . . .))))))

Scheme and Functional Programming, 2006 117

