Indiana University
Computer Science Department

Technical Report 619
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN. cgi?trnum=TR619

Scheme 2005

Proceedings of the Sixth Workshop
on Scheme and Functional Programming

September 24, 2005
Tallinn, Estonia

J. Michael Ashley and Michael Sperber, editors

Sponsored by the Association for Computing
@ Machinery’s Special Interest Group on
Programming Languages (ACM/SIGPLAN)

Preface

This report contains the papers presented at the Sixth Workshop on Scheme and
Functional Programming, on September 24, 2005, in Tallinn, Estonia.

The purpose of the workshop is to discuss experience with, and future de-
velopments of, the Scheme programming language, as well as general aspects of
Computer Science loosely centered on the general theme of Scheme. The intention
of the steering committee is that the workshop provide an annual focal point where
the Scheme community can gather and share ideas: researchers, educators, imple-
mentors, programmers, hobbyists, and enthusiasts of all stripes—all welcome.

Eleven papers were submitted in response to the workshop’s call for papers.
Paper submission and review was conducted via electronic mail. Each paper was
read by at least three reviewers including at least two members of the program com-
mittee. We are grateful to Matthias Neubauer for his service as outside reviewer.

Several others helped with the planning for the workshop. Olin Shivers pro-
vided tools that helped produce this technical report. Olivier Dancy, ICFP general
chairman, and Patricia Johann, ICFP workshop chairman, were consistently help-
ful throughout the process. Tarmo Uustalu helped with the local arrangements. We
are thankful for all of this support and assistance.

Some of the software described in the papers is available from or listed on the
permanent home page of the workshop:

http://wuw.deinprogramm.de/scheme-2005/

J. Michael Ashley and Michael Sperber,
For the program committee

Program committee

Martin Gasbichler (University of ibingen)
Jonathan Rees (Millennium Pharmaceuticals)
Dorai Sitaram (\Verizon)

Jonathan Sobel (SAS Institute)

Contents

Type Classes Without Types
Ronald Garcia and Andrew Lumsdaine

Eager Comprehensions in Scheme: The design of SRFI-42
Sebastian Egner

Abstraction and Performance from Explicit Monadic Reflection
Jonathan Sobel, Erik Hilsdale, R. Kent Dybvig, Daniel P. Friedman

An Operational Semantics for R5RS Scheme
Jacob Matthews and Robert Bruce Findler.

Commander S - The shell as a browser
Martin Gasbichler and Eric Knauel

Ubiquitous Mails
Erick Gallesio and Manuel Serrano.

Implementing a Bibliography Processor in Scheme
Jean-MichelHufflen o o

The Marriage of MrMathematica and MzScheme

Chongkai Zhu

ACT Parameterization Framework
Alan Pavicic and Niksa Bosnic

Javascript to Scheme Compilation

Florian Loitsch

27

41

Type Classes Without Types

Ronald Garcia

Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, IN 47405

{garcia,lums}@cs.indiana.edu

Abstract

Data-directed programs consist of collections of genenicfions,
functions whose underlying implementation differs depegdn
properties of their arguments. Scheme’s flexibility lenelf to
developing generic functions, but the language has sonrécsino-
ings in this regard. In particular, it lacks both facilitiesr con-
veniently extending generic functions while preserving flexi-
bility of ad-hoc overloading techniques and constructsgfiaup-
ing related generic functions into coherent interfacess Paper

describes and discusses a mechanism, inspired by Haskell ty

classes, for implementing generic functions in Scheme dhat
rectly addresses the aforementioned concerns. Certgierties of

Scheme, namely dynamic typing and an emphasis on block-struc

ture, have guided the design toward an end that balancedis&u
and flexibility. We describe the system, demonstrate ittion,
and argue that it implements an interesting approach tonpady
phism and, more specifically, overloading.

1. Introduction

Data-directed programs consist of collectiongeheric functions
functions whose underlying implementation differs depegdn
properties of their arguments. In other words, a generictfan

is overloadedbor different argument types. Data-directed style ap-
pears often in Scheme programs, even in the Scheme stamdard |

brary. The standard generic arithmetic operators includetfons
such as andx, which exhibit different behavior depending on what
kind of arguments they are applied to. For example, applyitg
two integers yields an integer value; adding two complexes) on
the other hand, yields a complex value. A binary versionoduld

be implemented with the following general form:

(define +
(lambda (a b)
(cond
[(and (integer? a) (integer? b))
(integer-+ a b)l]
[(and (complex? a) (complex? b))
(complex-+ a b)]

* This material is based on work supported by NSF grant EIA1352 and
by a grant from the Lilly Endowment.

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.

Copyright© 2005 Ronald Garcia.

[else (error "invalid arguments")])))

The body of+ is simply acond expression that tests its operands
for various properties and dispatches to the implememtatfmon
finding a match. Assuming specific implementations of additor
integers and complex numbers, the function dispatchestégén
addition when the operands are integers, and complex nsmber
when the operands are compléx.

For all their benefits, generic functions implemented usisg
as above have their shortcomings. Such functions are nattrteea
be extended to support new types of arguments. Nonethsless,
a function may be extended at the top-level using ad-hoc sasn
in the following:

(define +
(let ([old-+ +1)
(lambda (a b)

(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]

[else (old-+ a b)]1))))

A function may also be extended in a manner that limits therext
sion to the current lexical scope, as in the following:

(let ([+
(let ([old-+ +])
(lambda (a b)

(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]

[else (old-+ a b)1)))D)
(+ my-number-1 my-number-2))

The above examples assume a user-defined number, of which

my-number-1 and my-number-2 are instances, and #y-number?
predicate that tests for such numbers. Both versiorsah handle
these new numbers. Although the second example only intexsiu
the new~+ in the scope of theet expression, the function could be
returned as a value from the expression and subsequentlyinise
other contexts.

These methods of extendinrgare ad-hoc. They don't directly
capture the intent of the programmer, and much of the corgent
boiler-plate code. Another issue with this style of extexgddata-
directed functions is that it does not respect the groupfriglated
functions. For example, the operator is just one of a group of
arithmetic operators that includes-, and/ as well, and in general
they should be introduced and extended together. Usinghitreea
method of introducing overloads, one must manually dupditiae

1This model disregards the possible coercion of argumentsatch each
other because such a mechanism is outside the scope of ttkis wo

idiom for each operator, resulting in duplicate boilerplabde and
no intentional structuring of the set of operators.

The Haskell [Pey03] language community has previously in-
vestigated overloading in the context of a statically ty[zedjuage
and as their answer to the problem producedtype classacil-
ity [WB89], which we describe later. Type classes are anagieg
effective approach to overloading and have spawned signifie-
search that has advanced their capabilities [NT02, Jona@%2].

This paper describes a language extension for Scheme fhat su
ports the implementation of groups of generic functions tair
overloads. This system is heavily inspired by Haskell' tyjasses,
butis designed to function in a latently typed language retypes
appear as predicates on values. For that reason, we considen
be apredicate classystem.

In order to fit with Scheme, this system differs from Hasleell’
type classes in some significant ways. Haskell is solely@sted
in dispatch based on static type information. In contrds, ad-
hoc method of constructing and extending generic functuars
dispatch on arbitrary predicates, including standardipatels such
asnumber? andchar?, as well as user-defined predicates such as
my-number? from the earlier examples. The described system also
supports overloading based on arbitrary predicates. Albereas
Haskell emphasizes compile-time type checking, errocking is
subservient to flexibility in this model. The overloadingehanism
described here eschews the conservative practice of Bigreators
before they are encountered at run time.

The combination of block structure, lexical scoping, anfl re
erential transparency plays a significant role in Schemgrpros.

3. A Brief overview of Haskell Type Classes

Haskell [Pey03] is a statically typed functional programmi
language, featuring Hindley/Milner-style type inferend&il78,
DM82] and its associated flavor of parametric polymorphism.
Haskell also, however, supports a formaaf-hocpolymorphism, or
overloading, in the form of type classes [WB89], which cintte
substantial expressive power to the language. In ordeittodnce
the concepts involved, and to provide a point of compariseaa,
briefly describe the type class system.

class Eq a where

==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x /=3 = mnot (x == y)

x ==y = mnot (x /= y)
instance Eq Integer where

X ==y = x ‘integerEq‘ y
instance Eq Float where

X ==y = x ‘floatEq‘ y
elem (Eq a) => a -> [al] -> Bool
x ‘elem‘ [] = False

‘elem‘ (y:ys) = x==y || (x ‘elem‘ ys)

Figure 1. Haskell type classes in action

Consider the problem of specifying and using operatorsder n

Some of the previously discussed ad-hoc methods show haw ove meric types, specifically the equality operator. Figurelustrates
loading can be performed in Scheme and how those methods fallgy the equality operator is specified for Haskell in its St

short in lexical contexts. The predicate class system wsepitedi-
rectly supports overloading functions under such circamss.

Prelude. First @ype classs introduced. A type class is an interface
that specifies a set afass operatorsgeneric functions associated

Our overloading mechanism was implemented for Chez Schemeyjth a particular type class. The above type class defingissen-

using the syntax-case macro system [DHB92, Dyb92], an ambehn
macro expansion system provided by some popular Scheme-impl
mentations that combines hygienic macro expansion [KFFD86
with controlled identifier capture. Because our system iplém
mented as macros, its semantics can be described in ternesvof h
the introduced language forms are expanded (See Section 6).

2. Contributions
The contributions of this paper are as follows:

¢ A language mechanism for overloading is described, indpire
by the type class model but modified to better match the ca-

tially says “for all typesa that belong to the clasg;, the operators

== and/= are overloaded with values of the specified type signa-
tures.” Thegq class defines default implementations ferand /=,
however in order to use them, a type must be explicitly ded&o
overload the type class functions. This role is playednstance
declarations An instance declaration declares membership in the
type class and implemenitsstance methodspecialized overloads
of the class operators. For example, the first instance ideida

for Integers declares thamteger is a member of theq class, and
provides an explicit overload foi=. The == operator forinteger
values is implemented in terms of a hypotheticédegerEq Oper-
ator defined solely for integers.An analogous instance for floats
is also presented. Both instance declarations inherit ¢ffiudt /=
method, which will call the specifie= overload associated with

pabilities and the philosophy of Scheme. Scoped classes andthe type. In fact one may legally omit the: implementation as
instances that allow both classes and instances to be shadell, but then a call to either operator yields an infiniteursgon.

owed lexically is an interesting point in the design spaag: F
thermore, expressing this facility in the context of a dyiram
cally typed language allows some interesting design optol
tradeoffs that are not available to statically typed langasa

The described dynamic dispatch model combines the fletibili
of ad-hoc techniques available in Scheme with a more struc-
tured mechanism for overloading functions. Previous mecha
nisms for overloading in Lisp and Scheme have pointed toward
a relationship to objects and object-oriented programming
system supports dispatch based on arbitrary runtime piieper
Furthermore, the predicate class model groups relatedrigene
functions into extensible interfaces.

A point of comparison is provided between the overloading
mechanisms expressed in statically typed Haskell and diynam
cally typed Common Lisp traditions.

Finally, theelem function, analogous to Schemeigmber, is pre-

sented. This generic function is not part of thetype class, yet
still relies upon it. Its type(Eq a) => a -> [a] -> Bool isquali-

fiedwith Eq and essentially saysen is overloaded for all types

that belong t@g, in which case its type is -> [a] -> Bool.”

4. Language Description

The predicate class mechanism introduced in this papersfam
embedded language for overloading in Scheme and thus pxely
tends the existing language. This section introduces ascritbes
the forms with which we extend Scheme to provide type clées-|
functionality. The extended language syntax is summaiiiz&ig-
ure 2.

21n Haskell, a binary function can be called in infix positiondnclosing it
in single back quotes

operation specifications illustrates how to supptiefault instance

o+ ,
(definition) — ' o) methodfor a class operation. Each symbagi» marks an argument
(deflfe'diss ((identifier) (variable)+) position for the operation. Any position marked with a poedé
{op-spec)+) variable will be used to determine dispatch to the propeaimse

| (define-instance ((identifier) (expression)+)

((method-name) (expression))+) method. If a predicate variable_is pla_tced in an argumemti_posi
| (define-qualified (identifier) ((identifier)+) then a call to that class operation will use that argumenttipos
(expression)) to test for instance membership: The instance predicateiassed
| (define-open-qualified (identifier) (({identifier)+) with the given predicate variable will be applied to the jeasar-
(expression)) gument. Instances of the class are tested until an instarfoarnd
whose predicates retusa for each argument position marked with
(expression) - a predicate variable. The dispatch algorithm implies thatdrder
(let-class ([({identifier) (variable)+) in which instances are declared can affect the instanceatblatss
{op-spec)+]) operator dispatches to. In this regard, the mechanics pétlik are
(body)) analogous to theond form of dispatch described earlier.
For example, consider the following rendition of the type
| (let-instance ([((identifier) (expression)+) class in Scheme:
({method-name) (expression))+])
(body)) (define-class (Eq a)
[(== a a) (lambda (1 r) (mnot (/= 1 r)))]
(op-spec) — ((operator-name) (variable)x) [(/= a a) (lambda (1 r) (mot (== 1 r)))I1)

¢ tor- iable)*) ion)] . - . A
(operator-nane) (variable)s) (expression) This definition looks similar to the Haskell equivalent irgFi

Figure 2. Syntax extensions for type classes in Scheme ure 1, but there are a few differences. A Haskell type classisp
fication is used for type checking as well as dispatch. Thesda
type variable would be instantiated and used to ensure tia ¢

4.1 Predicate Classes that calls the class operators is type safe. In the case aftibee
Scheme code, however, the predicate variabtmply specifies
how to dispatch to the proper instance of a method. As written
calls to the== method determine dispatch by applying the pred-
icate to both arguments. In some cases, however, the uimtgrly
implementations all require both arguments to have the $gpee
Under that assumption, one can optimize dispatch by chgdiity

A predicate class is a form that establishes an interfacever-

loading. Predicate classes are introduced using eithefethigie-

class form, for top-level definitions, or theet-c1lass expression,
for lexically scoped definitions. The syntax that we use fase
constructs is as follows:

(define-class (class-name pv ...) the first argument: the dispatched-to function is then etqukto re-
op-spec port an error if the two values do not agree. The followingrepe
ce) shows how to implement such a single-argument dispatch:

(let-class ([(class-name pv ...) (define-class (Eq a)

op-spec ...1) [(==a _) (lambda (1 r) (not (/=1 r)))]
expr ...) [(/= a _) (lambda (1 r) (mot (== 1 r)))1)

Thedefine-class form introduces a new predicate class at the top- In the above code, the second reference tm each of these

level with the name:1ass-name. Thelet-class form correspond- ~ Operations is replaced with the underscore symbpl ince the

ingly introduces a type class that is visible within the seopits underscore is not one of the specified predicate variables, i

enclosed bodydzpr . ..). The name of the type class is followed ignored. Symbols that do not represent predicates are rsefilu

by a list of predicate variablespw ...). A class’s predicate vari- however, when dispatch is dependent on argument posititres o

ables determine the number of predicate functions thabeilised ~ than the first. For example in the form:

to establish an instance of a predicate class. The ordeeqfréu- (define-class (Eq a)

icate variables matters, and corresponds directly to theraf the [(== _ a) (lambda (1 r) (mot (/= 1 r)))]
predicates that are used to define an instance (as shownriexhe [(/= _ a) (lambda (1 r) (mot (== 1 r)))1)
section). Whereas Haskell type class instances are deieaniy
the type used in an instance definition, predicate classededer-
mined by a list of Scheme predicate functions. This corredpo
directly to the Haskell extension that supports multipleapaeter
type classes [PIM97]. Following the name of the class anisits
of predicate variables is a list ofass operation specificationsig-
nified above byop-spec. Each operation specification takes one of
the following two forms:

dispatch is determined by the second argument to the opesati
Under some conditions, it is useful to develop a class that di

patches on multiple predicates, rather than two. For exaneph-

sider a type class that specifies overloaded operators pleabie

on vector spaces. A vector space must take into consideriaith

the sort of vector and scalar types used, and this can be done a

follows:

(define-class (Vector-Space v s)
[vector-add v vl
[scalar-mult s v])

(op-name sym ...)

[Cop-name sym ...) ezpr]
Notice that in particular, scalar multiplication takes alac as its
first argument and a vector as its second. Classes that espres
multi-sorted algebras are bound to have one predicate &br gart.

their purpose is to establish the names of the operatoradielg to
the class, as well as to specify which arguments will be useldt
termine dispatch based on which predicates. The seconaxskort

4.2 Class Instances

3 Throughout the text, code uses square brackgtsand parentheseg))]
interchangeably for readability. Several Scheme impleati&ms, including A class instance is an implementation of overloads for aifipdc
Chez Scheme, support this syntax. predicate class that is associated with a particular lisSadfeme

predicates. they are introduced using dh€ine-instance form or
thelet-instance expression. The syntax for these constructs is as
follows:

(define-instance (class-name pred ...)
(method-name ezpr) ...)
(let-instance ([(class-name pred ...)

.1

(method-name ezpr)
ezpr ...)

Thedefine-instance form introduces a new top-level instance of
a previously declared class. Thet-instance form correspond-
ingly introduces a new instance of a class for the scope of its
body (ezpr ...). An instance definition names the referent class
followed by a list of Scheme predicates—functions of oneapar
eter that verify properties of objects. Built-in exampleslude
integer? andboolean?, but any function of one argument is ac-
ceptable (though not necessarily sensible). These ptedicae
used during dispatch to find the proper overload.

Following the class name and list of predicates is a list of
method bindings for the class operations. The first componen
method-name Specifies the name of an operation from the class
definition. The method bindingzpr, should evaluate to a function
that is compatible with the operation specification from theess
definition. The expressions that define instance methodsnhec
suspended: the entire expression will be evaluated for eatth
to the method, therefore any side-effects of the expressitin
be repeated at each point of instantiation. Because thiavimh
differs from that for traditional scheme definitions, thepeession
that defines an instance method should simply b&néda form or
a variable. An instance declaration must have a method tefini
for each class operation that has no default.

The following code shows an instance of the abeyelass for
integers:

(define-instance (Eq integer?)

(== =))

Following the above definition, applying= to integers will
dispatch to the standardfunction. However, the class could be
redefined in a controlled context usingt-instance as follows:

(let-instance ([(Eq integer?)
(== eq?)])
)]

Applications of== to integers in theet-instance form body will
dispatch to the standaed? function.

Class operations are not always open to additional ovesload
in this system. As shown later, they are implemented as ifilemt
macros (also called symbolic macros), and when referenqeahe
to an instantiation When a class operation is instantiated, the
result is a function that may dispatch only to overloads & th
operation that are defined visible at the point of instaiatmtin
particular, if a function definition calls a class operatitihose
calls will recognize no new lexical instance declaratiorisaduced
before the function itself is called. Continuing tixeclass example,
consider the following program:

(define-instance (Eq char?) (== char=7))
(define elem
(lambda (m 1s)
(cond
[(null? 1s) #f]
[(== m (car 1s)) #t]
[else (elem m (cdr 1s))]1)))

(let-instance ([(Eq char?) (== char-ci=?7)])
(elem #\x (list #\X #\Y #\Z)))

First an instance afq is defined for character types, usicigar=".
Next, thee1lem function is implemented. This function is analogous
to the Haskell function from Figure 1. Thaen function imple-
ments the same functionality as its Haskell counterpart,doe

to the instantiation model of instance methods, calls toftime-
tion will dispatch based on the instances visible at the tpibiat
elem is defined. Thus, even though the next expression shadows
the instance declaration for characters, usingr-ci=7 to imple-
ment==, the call toelen still dispatches to the first instance dec-
laration, which uses the case-sensitive comparator, anexpres-
sion yields the resul¢f. Had the new instance been defined using
define-instance, thenelem would have used the case-insensitive
comparator, and the above expression would have yieleled

4.3 Qualified Functions

The previous example illustrates how class operators @asd
-instance expressions preserve lexical scoping. Unfortunately, thi
introduces a difference between generic functions impleeatke
as class operators and generic functions that are implehers
Scheme functions that apply class operators. It is benkficaso
have generic Scheme functions implemented in terms of olaess
ators, that exhibit the same overloading behavior as classators.

Haskell functions are overloaded by expressing their impgle-
tations in terms of class operators. When overloaded, atiftmc
type is then qualified with the type classes that define theatipas
used in the function body. Recall theen function defined in Fig-
ure 1. It has qualified typ€Eq a) => a -> [a] -> Bool, which
expresses its use of type class operators.

Scheme functions require no such qualification to call class
operators, but we borrow the notion to express our more dimam
generic functions, which we cajhalified functions. Qualified
functions take one of the following forms:

(define-qualified fn-name (class-name ...)
expr)

(define-open-qualified fn-name
(class-name ...)
expr)

The functionezpr defined by this form is qualified by the list
of classes(class-name...). Qualified functions have the same
overload model as class operators. When referenced inside
let-instance form that overloads one of the qualifying classes,
a qualified function’s body can use the lexically introducser-
loads. Qualified functions are also subject to instantmatioside a
qualified function, the operations from the list of qualifgiclasses
dispatch to the overloads visible at the point in the progvdmare
the function isreferencedrather than the point where the function
was defined As such, the behavior of the function can be over-
loaded at or around call sites. Furthermore, the expressian
defines a qualified function is suspended in the same manii@r as
instance methods. It is thus expected that qualified funstiaill
be implemented withambda forms. However, qualified functions
suffer this strange evaluation property in exchange foathikty to
dynamically overload their behavior.

Revisiting theelem example from the previous section, the
function is now defined usin@efine-qualified:

a

(define-qualified elem (Eq)
(lambda (m 1s)
(cond
[(null? 1s) #f]
[(== m (car 1s)) #t]
[else (elem m (cdr 1s))1)))

The call to== within the function body will now dispatch based
on the instances visible at the point thatn is called, rather than
where it was defined. Using this definition &xfem, the expression:

(let-instance ([(Eq char?) (== char-ci=?7)])
(elem #\x (list #\X #\Y #\Z)))

yields the valuert.
The following program illustrates a qualified function eallin
two different instance contexts:

(define-qualified ==-3 (Eq)
(lambda (x y z) (and (== x y) (== y 2))))
(cons (let-instance ([(Eq char?)
(== char-ci=7)])
==-3 #\x #\X #\z))
(let-instance ([(Eq char?)
(lambda (a b)
#t))1)
==-3 #\x #\X #\z)))

The==-3 qualified function performs a 3-way equality comparison.
Both applications o£=-3 take the same arguments, but each appli-
cation occurs within the scope of a different instance datlan.
This results in dispatch to two different implementatiofshe ==
method inside the body of the qualified function: the firsfqen-

ing a case-insensitive comparison and the second alwalginge
#t. Evaluation of this expression yields the paies . #t).

A self-reference inside the body of a function defined with
define-qualified refers to the current instantiation of the func-
tion. However, if a function is defined witkef ine-open-qualified,
then a self-reference results in a new instantiation of tnedified
function. Thus it is possible for such a qualified functionctdl
itself with new instances in scope, as in the following (attieaily
bizarre) example:

(let-class ([(B p) (o p)1)
(let-instance ([(B boolean?)
(o (lambda (x)
’boolean))])
(define-open-qualified f (B)
(lambda (x)
(cons
(o x)
(if x
(let-instance ([(B boolean?)
(o (lambda (x)
x))1)
(f #£))
>()))))
(f #t)))

The above expression defines a clasthat specifies one operation
of one argument. It then establishes an instance of the @ass
booleans and defines a functiotthat is qualified over instances of
the class. Calling with the value#t results in a call to the instance
method in the scope of only the outer-instance definition. The
result of this call, the symbolboolean, is paired with the result of
recurring ont, this time in the scope of an instance that implements
the instance method as the identity. The final result of these
gymnastics is the list (boolean #£). Whether this functionality
serves a useful purpose is a subject of future investigation

5. Examples

Under some circumstances, a set of instance methods withbe i
plemented such that each applies its own associated classtop
This makes sense especially when defining class instancdatfo
structures that contain values for which instances of theeszlass
exist. For instance, consider the following implementatbeq for
Scheme lists:

(define-instance (Eq 1list?)
(lambda (a b)

(cond
[(and (null? a) (null? b)) #t]
[(or (null? a) (null? b)) #f]
[else (and (car a) (car b))

== (cdr a) (cdr b)))I))1)

This instance ofq requires that= be overloaded for every element
of the list. The nested calls t& in the Scheme implementation are
resolved at runtime and will fail if the arguments are not rhens
of thegq class.

Scheme lists result simply from disciplined use of pairs and
the null object €()). As such, a more fitting implementation of
equality would handle pairs and the null object separagelyn the
following:

(define-instance
(lambda (a
(define-instance
(lambda (a

(and (==

(Eq null?)
b) (eq? a b))1)
(Eq pair?)
b)
(car a)
(cdr a)

(car b))
(cdr b))

Scheme programs often use lists as their primary data stejct
and operate upon them with higher order functions, espgcial
the standardhap function. Nonetheless, lists are only one data
structure among others, trees for instance, and it may heabés
to map a function over other such data structures. The Haskel
standard library specifies an overloaded implementatiomap,
calledfmap, which varies its implementation depending on the data
structure over which it maps. Haskell supports overloadimtype
constructorslJon93], and this functionality is used to implement
generalized mapping.

In Haskell, thefmap function is the sole operator of tif@nctor
constructor class, which is defined as follows:

where
-> f a ->f b

Functor f
(a -> b)

class
fmap

The proper implementation a@hap for lists is the standargap
function, and the instance for lists is simple:

instance Functor [] where
fmap = map

where[] is the type constructor for lists.
What follows is a Scheme implementationfakp in the same
style as the Haskell version:

(define-class (Functor p)
(fmap fn p))

(define-instance (Functor list?)
(fmap map))

In order to match standard Schem, fmap iS not curried. The
analogous instance declaration for Scheme lists is showweab
Scheme has no notion of type constructor analogous to that in
Haskell. This is especially clear in that Scheme lists areroe
geneous: any given list can contain any Scheme value, egard
of its type. Though Haskell considers type constructor tdibgnct
from types, Scheme has no such distinction, and a simpléqgated
such agist? for lists, suffices.

Given the above definition afunctor, one might define a tree
data type and an overload fiap for it as follows:

(define-record tree-branch (left right))
(define-record tree-leaf (item))

(define-instance (Functor tree-branch?)
(fmap
(lambda (fn branch)
(make-tree-branch

(fmap fn (tree-branch-left branch))
(fmap fn
(tree-branch-right branch))))))

(define-instance (Functor tree-leaf?)
(fmap
(lambda (fn leaf)
(make-tree-leaf
(fn (tree-leaf-item leaf))))))

(fmap addl (1list 1 2 3))

(fmap (lambda (x) (fmap addl x))
(make-tree-branch
(make-tree-leaf (list 1 2 3))
(make-tree-leaf (list 4 5 6))))

This example uses Chez Scheme'’s record facility for defidatg
types. The syntax:

D))

(define-record rname (slotn

defines a new data type and along with it a construgi®é-rname,

a type predicatename? that returnst£ for any other scheme type,
and accessors of the forihame-stotn for each element. Most
Scheme implementations supply similar facilities.

First, two data types with which trees can be describeée-
branch andtree-leaf, are defined. Then for each of these data
types an instance @hinctor is defined. Each instance’s implemen-
tation offmap constructs a new record from the result of recursively
applyingfmap to its components. Finally, two examples of calls to
fmap are shown. They yield the expected results: a data struofure
the same shape with each number incremented by one.

The Common Lisp Object System (CLOS) [GWB91] is another
example of a LISP system that provides support for generic-fu
tions and overloading. CLOS is an object-oriented systeraseh
dispatch is primarily based on class identity, but it algopsurts the
overloading of generic functions on based on specific valbes
example, the CLOS method:

(defmethod
’never)

(y (eql 7))

((x number)

defines an overload of the generic function that is called when-
ever the first argument is a number and the second argumenat is e
actly equal to the number 7.

Since the system described here supports arbitrary ptedica
it too can implement such overloads. The following Schendeco
mimics the above:

(define-class (Eq a b)

(== a b))
(define is-seven? (lambda (x) (eq? x 7)))
(define-instance (Eq number? is-seven?)
(lambda (x y) ’never)])

A new version of the&q class uses two predicate variables in order
to establish the two separate overloads. Then an instaneg isf
declared using theumber? predicate and a hand-crafted predicate
that checks for equality to.

6. Translating Predicate Classes to Standard
Scheme

Since the predicate class facility that we describe herenjge-
mented using Scheme macros, programs that use them cardespo
directly to traditional Scheme code, the output of macrceeson.

In this section, we illustrate how programs written using #ys-
tem can be understood in terms of the resulting Scheme code.

The system implementation relies on the syntax-case macro
expander’s controlled variable capture, as welbésine-syntax
macro definitions scoped within function bodies. Howeverfs
like 1et-class andlet-instance could be similarly implemented
in terms ofletrec-syntax.

A class definition formdefine-class Or let-class, introduces
two artifacts to the final program. First, an empty classdabl
created. In this system, a class table is a list of entries foneach
instance of a class. Each entry in the table is a pair of vector
vector of predicates, and a vector of instance methods.

The class definition form also introduces a predicate dispat
function for each operation specified. Based on the operapec-
ification, a function is created that searches the classg tatying
to find a set of predicates that match the arguments passée to t
function.

For example, consider again thgclass:

(define-class (Eq a)
[(== a _) (lambda (1 r) (mnot (/=1 r)))]
[(/= _ a) (lambda (1 r) (mot (== 1 r)))])

For illustration purposes, the= operation dispatches on its first
argument but the/= operation dispatches based on its second.
The code resulting from this form is similar to what is shown i
Figure 3.

The class definition introduces a class table, namgdable,
which starts out empty. Next, the default instance methods a
defined. Each default becomes the body of a lambda expression
that takes a class table in order to implement recursion gmon
the instance methods. Then for each class operatioand /=,

a dispatch function is introduced. This function is curriéidst
accepting a class table and then an arbitrary list of argtsn&he
bodies of the dispatch functions traverse the instancéesritr the
class table, searching for a match between the predicatel the
dispatch argument. Both dispatch functions access thécpated
as the first element of the vector of predicates. Skcdispatches
based on its first argument=-dispatch runs the predicate on
(car args), the first argument to the function, by#-dispatch
runs the same predicate dradr args), its second argument.
If the class had more than one predicate, each predicatedwoul
be tried on its corresponding argument in an attempt to tetec
matching instance. Finallyg=-dispatch applies to its arguments
the first method in the method vecteg-vec, whereasy= applies
the second method. Each instance is passed the currentaiides
in order to properly support recursion among instance nustho

The instance definition formsdefine-instance and let-
instance, introduce new methods to the class instance table and
ensure that those instances are visible. To do so, an iresthfiti-
tion produces code that updates the class instance tabléefinds
identifier macros for each class operation. These macroshwh
are not shown for they are implementation details, causes dp-
erations to recognize the new instance. For example, centieé
following expression:

(let-instance ([(Eq integer?)

(== =)1)
(cons
(list (== 5 6) (/= 5 6))
(list == /=)))

This program introduces an instance of #eclass based on the
standardinteger? predicate, assuming the previously described
definition of the class. Thefunction is named as the implementa-
tion of the== operator, and the= is left undefined, thereby relying
upon the default method. Within the scope of this instandée de
nition, both== and /= are called with integer arguments, and the
results are collected alongside their instantiations.

(define Eq-table ’())

(define ==-default
(lambda (Eg-table)

(lambda (1 r) (not ((/=-dispatch Egq-table) 1 r)))))

(define /=-default
(lambda (Eg-table)

(lambda (1 r) (not ((==-dispatch Eg-table) 1 r)))))

(define ==-dispatch
(lambda (Eg-table)
(lambda args
(letrec ([loop
(lambda (table)
(let ([pred-vec (caar table)]
[op-vec (cdar table)l])
(cond

[(null? table) (error

"No matching instance.

..M

[((vector-ref pred-vec 0) (car args))
(apply ((vector-ref op-vec 0) Eq-table) args)]

[else (loop (cdr table))])))]1)

(loop Eq-table)))))
(define /=-dispatch
(lambda (Eg-table)
(lambda args
(letrec ([loop
(lambda (table)
(let ([pred-vec (caar table)]
[op-vec (cdar table)l])
(cond

[(null? table) (error

"No matching instance..

.u)]

[((vector-ref pred-vec 0) (cadr args))
(apply ((vector-ref op-vec 1) Eq-table) args)]

[else (loop (cdr table))1)))])

(loop Eg-table)))))

Figure 3. Expansion of th&q class

The following roughly illustrates the expansion of the abov
expression:

(let ([Eq-table
(cons
(cons (vector integer?)
(vector (lambda (Eq-table)
/=-default))

=)

Eq-table)])
(cons
(list ((==-dispatch Eq-table) 5 6)
((/=-dispatch Eq-table) 5 6))
(==-dispatch Eg-table)
(/=-dispatch Eq-table))))

(1list

First the above code adds a new entry to the instance tabdetrefl
ing the structure of the supplied instance. The entry i of
two vectors. The first contains th&teger? predicate, or more
generally all the predicates needed to describe the instarite
second vector holds the operators, in the same order adisgeci
in define-class (instance operators may be specified in any or-
der and they will be appropriately reordered). This entrghisn
added to the front of the table and bound to a new lexical bbgia
Eq-table. As with the default method implementations, the user-
supplied implementation of the- method becomes the body of a
lambda. Since no implementation is provided fer the default
implementation is substituted.

In this new lexical scope, identifier macros for the opester

pansion, the calls to the operators in the original code ranest
formed to calls to the dispatch functions, passing alongtbeer
class table, and then applying the result to the intendashaegts.
As previously mentioned, class operations are not firssobmi-
ties. Class operations are implemented using identifierosaso
each class operation expands to replace any reference it iamw
expression that applies its associated dispatch funatidimet class
table.

The define-instance form differs from its lexical counterpart
in that it updates the class table in place. For examplen$tamnce
illustrated above could also be written as follows:

(define-instance (Eq integer?)

(== =))
And its expansion is as follows:

(set! Eq-table
(cons
(cons (vector integer?)
(vector (lambda (Eq-table) =)
/=-default))

Eq-table))

Rather than lexically binding a new table to extend the old, én
applies side effects to the existing table to add the nevamst
entry.

Thedefine-qualified form introduces functions that look up

and/= are introduced. These macros handle instantiation of class class operation overloads visible at the point where thetfan is

operators when they are referenced. Thus, following allrmag-

referenced, rather than where the function is defined. Téeiment

such functionality, this form introduces an implementafionction
that takes one class table argument for each class thafigsiai
Consider, for example, the following qualified function:

(define-qualified assert-equal (Eq)
(lambda (a b)
(if (/= a b)
(error "Not equal!"))))

This function uses whatever instanceegfmatches its arguments
at its instantiation point to test them for inequality. Thi®gram
expands to the following:

(define assert-equal-impl
(lambda (Eg-table)
(letrec
([assert-equal
(lambda (a b)
(if ((/=-dispatch Eg-table) a b)
(error "Not equal!")))1)

assert-equal)))

Thedefine-qualified form generates the above function, which
takes a class instance table and uses it to dispatch to tipempro
implementation of the/= method, as reflected by the call to
/=-dispatch. The body ofassert-equal is wrapped within a
letrec form and bound to the namessert-equal SO that self-
references refer to the current instantiation. At the ®l, the
nameassert-equal iS bound to a macro whose expansion applies
the implementation function to the class table. For exapyse-
sider the following expression:

(cons (assert-equal 5 5)
assert-equal)

Its expansion takes the following form:

(cons ((assert-equal-impl Eg-table) 5 5)
(assert-equal-impl Eq-table))

The references tassert-equal expand to apply the implemen-
tation function,assert-equal-impl, to the newly extended class
table.

Theassert-equal qualified function can be implemented using
thedefine-open-qualified form as follows:

(define-open-qualified assert-equal (Eq)
(lambda (a b)
(if (/= a b)
(error "Not equal!"))))

Then only the expansion of the implementation functionedf as
shown in the following:

(define assert-equal-impl
(lambda (Eg-table)
(lambda (a b)
(if ((/=-dispatch Eg-table) a b)
(error "Not equal!")))))

In this case, the body of the function is no longer wrappedhiwit
aletrec form. Thus, calls taisset-equal within the body of the
function refer to the aforementioned macro and are expaaded
described above.

7. Related Work

Although type classes in particular have been studied irstag
ically typed functional programming languages, overlogdin
general has also been added to dynamically typed progragnmin
languages.As mentioned earlier, for example, the Commsp Li
Object System (CLOS) provides many of the benefits of an objec
oriented programming language. Its design differs fromeoth

object-oriented languages in that operations are implésdarsing
generic functionén the form of overloaded methods. These meth-
ods differ from the methods of most object-oriented langsag
in that they are not represented as messages passed to ah obje
Rather they are applied like Lisp functions, but each gerferic-
tion name can refer to multiple method definitions, each begp
with a different set ofparameter specializersThis mechanism
applies to more than user-defined Lisp classes. Lisp metteaus
also be overloaded based on native Lisp types as well as-equal
ity requirements. Furthermore, specialization can berdeted
based on arbitrary argument positions in a method. As saches
consider the CLOS generic functions to be a generalizatidheo
typical object-oriented style.

The following code illustrates the implementation of géner
methods in Common Lisp:

(defmethod == ((x number) (y number))
(= x y))

(defmethod == ((x string) (y string))
(string-equal x y))

(defmethod != (x y)
(not (== x y)))

(defmethod == ((x number) (y (eql 7)))
’never)

Thedefmethod special form is the means by which Common Lisp
code expresses generic functions. Each calefmethod intro-
duces an overload. The first two lines establish overloadshi®
== function, one for numbers and one for strings. Each indg&cate
its overload by listing the types of its arguments, and usesap-
propriate concrete function to implement the overload. tNax=
generic function is implemented with one overload that gdaco
constraints on its arguments. Its body is expressed in tefrtise
previously defined= function. Finally, a curious overload of the
== function specifies different behavior if its second argutrien
the number. Given this definition, the expressiga= 7 7) yields
the symbol never.

Although standard Scheme does not specify a mechanism for
implementing overloaded functions, rewrites of the CLOS Inze
nism are available for certain Scheme implementations, [Bar]).

Overloading functions in Scheme has been the subject of pre-
vious research. In [Cox97], a language extension for Schisme
described that adds a mechanism for overloading functifinide
tions. The formSlambda++ anddefine++ extend the definition of
an existing function, using either user-supplied pre@isat an in-
ferred predicate to determine the proper implementatiorthis
regard it is similar to the Common Lisp Object System. Howeve
it differs from CLOS in that the implementation combinesmlér-
loads at compile time and generates a single function wittisd
patch functionality inline. Our design is fully implemedtevithin
a macro system, whereas this extension requires modificatm
the underlying Scheme implementation.

Other programming languages have also investigated models
of overloading. Cecil [Cha93] is a prototype based (or dé&s)
object-oriented programming language that features stigpo
multi-methods [Cha92]. It differs from systems like CLOStlvat
each method overload is considered to be a member of all the ob
jects that determine its dispatch. These methods thus haxie p
leged access to the private fields of those objects. Cecih vasy
flexible notion of objects, and since objects, not typesemeine
dispatch for Cecil multi-methods, it can capture the fupahility
of CLOS generic functions, including value equality-bapactam-
eter specializers. Furthermore, Cecil resolves multihoeétcalls
using a symmetric dispatch algorithm; CLOS uses a linearahod
considering the arguments to a call based on their ordereath
gument list.

MultiJava [CLCMOQ] is an extension to the Java [GJSBOOQ]
programming language that adds support for symmetric multi
ple dispatch, as used in Cecil. This work emphasizes backwar
compatibility with Java, including support for Java’s gtahethod
overloading mechanism alongside dynamic multi-methopatish.

Recently, the language’® [SLO5], an extension of the poly-
morphic typed lambda calculi of Girard and Reynolds [Gir72,
Rey74], introduced mechanisms similar to the design dasdri
here. It introducesoncept andmodel expressions, which are anal-
0gous tolet-class andlet-instance. It also adds a notion of
generic functionswhich are analogous to our qualified functions,
as well as closely related to Haskell overloaded functi@eneric
functions can have qualified type parameters much like Hiaske
but the dispatch to its equivalent of instance operatorsstzased
on the instances visible at the point of a function call. Giene
functions do not have a notion of instantiation howeverythave
first class status and can be called elsewhere yet still xhir
dynamic properties. The languade” is statically typed but its
type system does not perform type inference. In this languiag
stances of a class that have overlapping types cannot exikei
same lexical scope. Our system allows them, but recognizs t
they may lead to undesirable results. Furthermd?€, does not
have top-level equivalents tefine-class anddefine-instance.

In [OWW95], an alternative facility for overloading in ther-
text of Hindley/Milner type inference is described. Thedaage,
named System O, differs from Haskell type classes in that-ove
loading is based on individual identifiers rather than tylzsses.

A function may then be qualified with a set of identifiers arghsi-
tures instead of a set of type class constraints. Comparddskell
type classes, System O restricts overloading to only ocased
on the arguments to a function. Haskell, in contrast, suppmer-
loading on the return type of a function. As a result of Sys@m
restrictions, it has a dynamic semantics that can be usezhion
about System O programs apart from type checking. Haskadl ty
class semantics, on the other hand, are intimately tiededyibe
inference process. Because of this, it is also possible duepa
soundness result with respect to the type of System O pragram

Furthermore, every typeable term in a System O program has a

principal type that can be recovered by type inferencingggymust
be explicitly used to establish overloads however).

Some Scheme implementations provide theid-1et form,
which supports controlled side-effects over some dynarntierg.
To understand howt1luid-1et behaves, consider the following
program and its result:

(let ([x 51)
(let ([get-x (lambda () x)1)
(cons (fluid-let ([x 4]) (get-x))
(get-x))))

=> (4 5)

The code above lexically bindsto the values, and bindsget-x
to a function that yields. Then, two calls t@get-x are combined
to form a pair. The first is enclosed withinfauid-1et form. The
fluid-1let form side-effects, setting its value ta for the dynamic
extent of its body. The result of thetuid-1et form is the result
of its body, but before yielding its valuejuid-1et side-effects
again, restoring its original value. Thus, the code:

(fluid-let ([x 4]) (get-x))

is equivalent to the following:

(let ([old-x x] [t #£f1)
(set! x 4)
(set! t (get-x))
(set! x old-x)
t)

The value of x is stored before assignini it. Thenget-x is called
and its value stored before restoringo its old value. Finally the
expression yields the result Ofet-x).

This mechanism is in some respects comparable to our ptedica
class mechanism. For example, consider the following @mgr

(let ([== #f£f])

(define is-equal?
(lambda (a b) (==

(fluid-let ([==

(lambda (a b)
(if (number? a)
(= a b))
(is-equal? 5 5))))

a b)))

It binds the lexical variable= to a dummy value#f. Then a

System O’s dynamic semantics are very similar to those of the fynction is-equal? is implemented in terms of=. Finally == is

system we describe. Overloaded functions are introduded tise
form:

inst o s = e in p

whereo is an overloaded identifiet,is a polymorphic types is the
body of the overload, anglis a System O expression in which the
overload is visible. This form is analogous to Quft-instance
form. However,inst introduces an overload only on identifier
whereaslet-instance defines a set of overloaded operators as
described by the specified class.

Overload resolution in System O searches the instances lexi
cally for a fitting overload, much like our system does. Astsuc
System O’s dynamic semantics allow shadowing of overloasls,
our system does, but the type system forbids this: overloadst
be unique. System O'’s overloaded operators are alwaystdisgh
based on the type of the first argument to the function. Ouesys
however, can dispatch based on any argument position, &scus
bitrary predication to select the proper overload. Alsa, system
can use multiple arguments to determine dispatch. Fintalbygh
System O’s dynamic semantics closely match those of ouesyst
it can be still be implemented as a transformation to the mafire
cient dictionary-passing style that is often used to dbsdraskell
type classes.

effected viafluid-1et, and within its extentis-equal? is called.
This entire expression evaluatesito Compare the above program
to the following, which is implemented using predicate s&s

(let-class ([(Eq a) (== a _)1)
(define-qualified is-equal? (Eq)
(lambda (a b) (== a b)))
(let-instance ([(Eq number?) (== =)])
(is-equal? 5 5)))

It yields the same result as tlfeuid-1et example. Heres= is
introduced using thaet-class form. Also, is-equal? iS now
implemented as a qualified function. Thest-instance replaces
the f1uid-1et form. Due to this example’s simplicity, the extra
machinery of predicate classes exhibits some syntactitheae,
but programs involving more structure and content may beebet
formulated using type classes than usigid-1et to manually
implement the same functionality.

8. Conclusion

Predicate classes loosely determine what properties male gu
function dispatch. Traditional object-orientation detéres dis-
patch based on one entity involved in a method call: the dlass
which the method belongs. Some operations, however, edisf
patch based on more than the type of one entity. Idioms such as

the Visitor pattern [GHJV95] have been invented to suppat d
patch based on multiple types in object-oriented languadgskell
type classes support dispatch based on all the argumenfsc-a
tion. However, they specifically rely upon the types of fuoistar-
guments to guide dispatch. Types can encode some soptastica
properties of objects, including relationships betweeenth but
they cannot capture all runtime properties of programs. @om
Lisp generic functions also dispatch on the types of arguspéuat
as shown earlier, they also support predication based opetttie-
ular value of an argument. In this regard, some runtime ptigse
of values are available for dispatch. In our system, any Behe
predicate, meaning any function of one argument that migdity

Here, thefromInteger method has an extra parameter, which must
be the type to which the supplied integer is converted. Suina
tortion is significantly less expressive than the Haskedllague: a
value of the proper type must be available in order to cormert
otherinteger to it. This value’s sole purpose is to guide dispatch.
The change gives tham class an object-oriented feel and muddies
the abstraction with implementation details.

In the case of multiple parameter classes, operations neted n
be dependent upon all the class predicates. Despite interasd
known uses for multiple parameter type classes for Hasksll,
well as support for them in several implementations, typecking
of programs that make use of them is undecidable in the genera

#f, can be used to define an instance. Thus, any predicate that iscase. Nonetheless they are considered useful, and varieassm
writable in the Scheme language can be used to guide dispatch have been proposed to make them tractable [Jon00, PIM972,DO0

Predicates may mimic types, as in the standard Scheme ateslic

CKPMO5]. In the Scheme system, lack of dispatch informatiam

like integer?, and one may also compare an argument to some also be problematic, especially if multiple instances & thass

constant Scheme value, just as in Common Lisp. As such thie-mec

have overlapping predicates. A call to an operation witk #art

anism described here can subsume much of the generic fanctio of ambiguity results in the most recent instance’s openatieing

mechanism in Common Lisp. The Common Lisp Object System,
however, orders function specializations based on theritainee
hierarchy of any objects passed as arguments as well asotheir
dering in the function call. This differs from the Schemeteys,
which matches symmetrically across all predicates but i@kes
upon the ordering of and lexical distance to instance défirst
Thus, one may mimic this behavior, but such simulation ddpen
upon the ordering of instance definitions.

called. An implementation of this system could recognizehsu
ambiguities and report them as warnings at compile-time ad
errors at runtime, but the system we describe here does not.

In Haskell, a class instance method can be overloaded foe som
other class. In this manner, even a particular method cdizeuti
ad-hoc polymorphism in its implementation. Since methodhe
Scheme system are implemented using macros, it is not p@ssib
to implement an instance method as a qualified function. Caye m

The structure imposed by predicate classes provides a meanause such a function as a class method, but it will be bound to a

to capture relationships between operations. Relatedtiturad-
ity can be described as a unit using a class and subsequemtly i
plemented as instances of that class. Applications can ibkas
predicate classes to organize problem domain abstracti@mtem-
atically and render them in program text. Such is the organiz
tional power commonly associated with object-orientatioow-
ever, CLOS implements an object-oriented system that plEss
emphasis on the discipline of grouping functionality, preihg to
focus on the expressiveness of generic function dispatoh pfed-
icate class mechanism expresses the organization of slijette-
tains the emphasis on functions, rather than objects, giyas-
sociated with functional programming.

The flexibility of dynamic typing must, however, be weighed
against the limitations imposed by a lack of static inforioadur-
ing compilation. A static type system imposes some linotagion
how programs can be written, but this rigidity in turn yiettle abil-
ity for the language implementation to infer more proparfi@m
programs and use this extra information to increase expesssss.
For example, consider the following sketch of the standaaskell
Num type class:

class Num a where

fromInteger Integer -> a

particular class table at the point of its definition so itlwibt be
dynamic over its class qualifications.

As with Haskell, classes that qualify a function must notéhav
overlapping operation names. However, multiple classexsa/lbp-
eration names overlap can be defined, but the behavior fositioi-
ation is rather idiosyncratic. Suppose two predicate ekshare an
operation name. Then at any point in the program, the metaogtn
corresponds to the class with the instance that is most tigaizy
fined (at the top level using@efine-instance) Or most closely de-
fined (usinglet-instance). Thus, instance definitions introduce,
or re-introduce, their method names and in doing so shadew th
value most recently associated with those names. One nilayssti
commonly-named methods from multiple classes, but thigireg
the lexical capture of one class’s instance method prioefmihg
an instance of the other class.

Haskell type classes model more of the functionality tybica
of object-oriented mechanisms than the described Schestensy
For example, type classes can derive from other type clasaeh
as an object-oriented class can be derived from anotheg ugier-
itance. The predicate class mechanism does not supporetive-d
tion of one type class from another, but this functionalibylcl be
added to the system.

Combining the top-level class and instance definitions ailtdd
with lexically scoped class and instance definitions ineesaex-
pressive power. The ability to override an instance detitaras
needed lends flexibility to how applications are designex.dx-

Thexum type class has operations whose arguments do not con-ample, an application may establish some problem-spebiirac-

tain enough information to determine how dispatch will @ed.
Specifically, thefromInteger method, when applied to anteger
value, yields a value of typg wherea is the overload type. Since
this method always takes only an integer, it relies on thenetype
to distinguish overloads, a feature that our system doesupgort.
In order to implement something like the above in Schemeofhe
erations must take an additional argument that determispaith:

(define-class (Num a)

(fromInteger a i)

)]

10

tions using classes and provide some default instancehédar to
handle the common cases. Nonetheless, any portion of tHe app
cation that uses instance methods or qualified functions moay
override the default instances in a controlled fashion asled.
Haskell could also benefit from this capability, though we an-
aware of any investigation of such functionality for Haskel

9. Acknowledgments

This work benefited from discussions with R. Kent Dybvigeiry
Siek, and Abdulaziz Ghuloum as well as collaborations wlith t
latter two.

References

[Bar]
[Cha92]

[Cha93]

[CHO92]

[CKPMO5]

[CLCMOO]

[Cox97]

[DHBY2]

[DM82]

[DO02]

[Dyb92]

[GHIV95]

[Gir72]

[GJISBOO]

[GWB91]

Eli Barzilay. Swindle http://www.barzilay.org/Swindle/.

Craig Chambers. Object-oriented multi-methodSewil. In
ECOOP '92: Proceedings of the European Conference on
Object-Oriented Programmingolume 615 of_ecture Notes
in Computer Sciengpages 33-56, 1992.

C. Chambers. The Cecil language: Specification and
rationale. Technical Report TR-93-03-05, 1993.

Kung Chen, Paul Hudak, and Martin Odersky. Parametr
type classes (extended abstract).1892 ACM Conference
on Lisp and Functional Programmingages 170-181. ACM,
ACM, August 1992.

Manuel M. T. Chakravarty, Gabrielle Keller, Sim&eyton
Jones, and Simon Marlow. Associated types with class. In
POPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languageges
1-13, New York, NY, USA, 2005. ACM Press.

Curtis Clifton, Gary T. Leavens, Craig Chambensddodd
Millstein. MultiJava: modular open classes and symmetric
multiple dispatch for Java. I@OPSLA '00: Proceedings

of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applicatipages
130-145, New York, NY, USA, 2000. ACM Press.

Anthony Cox. Simulated overloading using genewiedtions
in Scheme. Master’s thesis, University of Waterloo, 1997.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. @&ytic
abstraction in SchemeLisp and Symbolic Computatipn
5(4):295-326, dec 1992.

Luis Damas and Robin Milner. Principal type-schenfigs
functional programs. IfPOPL '82: Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languagegages 207-212, New York, NY,
USA, 1982. ACM Press.

Dominic Duggan and John Ophel. Type-checking multi-
parameter type classed. Funct. Program.12(2):133-158,
2002.

R. Kent Dybvig. Writing hygienic macros in Schemethwi
syntax-case. Computer Science Department Technical Repor
#356, Indiana University, Bloomington, Indiana, June 1992

Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented SoftwareProfessional Computing Series. Addison-
Wesley, 1995.

Jean-Yves Girardnterprétation Fonctionnelle elimination
des Coupures de I'Arithatique d’Ordre Sugrieur. Thse de
doctorat détat, Universié Paris VII, Paris, France, 1972.

James Gosling, Bill Joy, Guy Steele, and Gilad Baad@ he
Java Language Specification, Second Editiokddison-
Wesley, 2000.

Richard P. Gabriel, Jon L. White, and Daniel G. Bofaro

11

[Jon93]

[Jon00]

[KFFD86]

[Mil78]

[NTO2]

[OWW95]

[Pey03]

[PIM97]

[Rey74]

[SLOS5]

[WB89]

[Xer]

CLOS: integrating object-oriented and functional program
ming. Commun. ACV34(9):29-38, 1991.

Mark P. Jones. A system of constructor classeslaading
and implicit higher-order polymorphism. IRPCA '93:
Proceedings of the conference on Functional programming
languages and computer architectuggages 52—61, New
York, NY, USA, 1993. ACM Press.

M. P. Jones. Type classes with functional dependsndén
Proc. 9th European Symp. on Prog. (ESOP 20@@Jume
1782 ofLecture Notes in Computer Scienpages 230-244,
New York, NY, March 2000. Springer-Verlag.

Eugene Kohlbecker, Daniel P. Friedman, Matthieidisen,
and Bruce Duba. Hygienic macro expansion.LFP '86:

Proceedings of the 1986 ACM conference on LISP and
functional programmingpages 151-161, New York, NY,

USA, 1986. ACM Press.

Robin Milner. A theory of type polymorphism in progm-
ming. Journal of Computer and System Sciendes348—
375, August 1978.

Matthias Neubauer and Peter Thiemann. Type clasgtes w
more higher-order polymorphism. I€FP '02: Proceedings
of the seventh ACM SIGPLAN international conference on
Functional programmingpages 179-190, New York, NY,
USA, 2002. ACM Press.

Martin Odersky, Philip Wadler, and Martin Wehr. Acesmd
look at overloading. INFPCA '95: Proceedings of the
seventh international conference on Functional prograngni
languages and computer architectupages 135-146, New
York, NY, USA, 1995. ACM Press.

Simon Peyton Jones. The Haskell 98 langudgeirnal of
Functional Programming13:103-124, January 2003.

Simon Peyton Jones, Mark Jones, and Erik Meijer. eTyp
classes: Exploring the design space.Phoceedings of the
1997 Haskell Workshg@une 1997.

John C. Reynolds. Towards a theory of type structume
B. Robinet, editorProgramming Symposiumolume 19 of
Lecture Notes in Computer Sciengmages 408-425, New
York, NY, 1974. Springer-Verlag.

Jeremy Siek and Andrew Lumsdaine. Essential languag
support for generic programming. RLDI '05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming
language design and implementatiqggages 73-84, New
York, NY, USA, 2005. ACM Press.

P. Wadler and S. Blott. How to make ad-hoc polymorphis
less ad hoc. IPOPL '89: Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languagespages 60-76, New York, NY, USA, 1989. ACM
Press.

Xerox PARC. Tiny-CLOS
ftp://ftp.parc.xerox.com/pub/mops/tiny/.

12

Eager Comprehensions in Scheme
The design of SRFI 42

Sebastian Egner

Philips Research Laboratories, The Netherlands
sebastian.egner@philips.com

Abstract
This article is about a certain style of programming iteipro-

grams. It is based on a concept we have named “eager compre

hension,” which is a convenient and efficient alternativéaibre-
cursion,do-loops, and lazy list comprehensions (aka “ZF expres-
sions”). Eager comprehensions are syntactic forms thaipesutate
the details of an accumulation process (counting elemergating
a list, etc.). Within these forms, expressions called getioes hide
the details of enumerating basic sequences (running thradigt,
through a range of integers, etc.). By combining these ai¢sria
a clearly structured and well-defined way, a concise and gdale
notation for writing loops emerges.

Of course, this style of programming is not new—it is imglici
present in any form ofloop-macro already—and so we discuss
several concrete designs that aim for the same goal. Singlyis

however, none of these designs has had much impact on Scheme,

despite the fact that their common floor plan has been aroomd f
decades. A particularly clean new design, SRFI 42, on theroth
hand has already made some friends in the first few years of its
existence. Explaining the design and implementation of ISR~
constitutes the main part of this article.

1. Introduction

The original motivation for working on a library for compre-
sions in Scheme was my dissatisfaction with the availablehme
anisms for writing trivial loops. In addition, | wanted toeate
an efficient mechanism for converting data structures witheo
quadratically increasing number of conversion operatioasied
chalk->cheese

The most basic example for a trivial loop is the construction
of a list of the firstn non-negative integers, using the constructs
available in the RevisédReport on the Algorithmic Language
Scheme R®RS) [1] only. Maybe the shortebtand clearest (1?)
expression for this is

(do ((k (-n 1) (- k 1))
(x () (coms k x)))
(k0 x))

1Please let me know if you can do shorter than thiRiRS.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Sebastian Egner.

13

This is terrible, not so much for the number of key strokesasian
example where details obscure intention.

In SRFI 42 that would bglist-ec (: k n) k), for inter-
active use, o(list-ec (:range k n) k) if speed is worth an-
other five key strokes. Since this article is not about theifipa-
tion of SRFI 42, but about the design principles, a basic lianity
with the following document will be assumed from now on:

http://srfi.schemers.org/srfi-42/srfi-42.html

(Alternatively, there is a brief introduction in the appeafWhile
initially the goal was adapting the comprehensions fourtddakell
to Scheme, a number of insights turned this enterprise intoce
new direction and eventually led to the concept later cofieeder
comprehensions.” These ideas can be summarized as follows:

1. Truly lazy comprehensions are not an attractive option in
Scheme because the overhead for non-strict data structodes
explicit handling of continuations is high. Moreover, laaym-
prehensions can be confusing in the presence of side-gffect

2. While list comprehensions and list generators are seiftci
for comprehensions in lazy languages, in eager languages it
is essential to be able to add application-specific comprehe
sions and generators easily—and without modifying thetexis
ing ones.

. While simple comprehensions resemble mathematicabset ¢

prehensions, more complex expressions increasingly ligek |

nested and parallel loops with accumulation of the resiits.
fact, that is what they are.

The fundamental eager comprehension has nothing to do wit

lists, but executes a command repeatedly according to iits ge

erators. The fundamental eager generator repeatedly e®difi
state explicitly.

4.

After these insights it was obvious that “bringing Hasletiompre-
hensions to Scheme” is the wrong goal to pursue. The more inte
esting question is “What would be a useful correspondingeph

in an eager programming language?” The answer is quiteisurpr
ing:

Eager comprehensiorA convenient style of programming
nested and parallel loops with accumulation of results. Ide
ally, scope and syntax are easy to remember and the irrele-
vant details of the iteration are hidden from the user.

The concept can also be interpreted as an (essentiallycsimita
abstraction mechanism from details of iteration: if youdawmnew
data structure that has given rise to some natural iteratiem

it might pay to encapsulate the details of this iterationcpss in

a generator. Similarly, if there is a natural way of condinga
data structure from a sequence of states—a comprehensght mi
be useful to applications.

Structure of this article. The remainder of this article is orga-
nized as follows. In Section 2 different notions of “compeakion”
are introduced. These notions are related but must not Heszxuh
In particular the term “eager comprehension” is being useal ige-
minder that this concept has in fact very little to do withyldist
comprehension.

Section 3 continues with stating the major design issueefnr
ger or lazy) comprehensions as a general and practicaffyluae-
guage construct. Section 4 discusses a number of concraEgnde
of loop facilities and comprehensions for the Lisp familyla-
guages, and related work. The implementation of SRFI 42ds th
subject of Section 5. It explains the overall structure amplémen-
tation strategy used in the reference implementation (whio-
fortunately performance-wise, is the only one availabledday).

In Section 6 the performance of the portable reference imete
tation is compared with other libraries. Finally, for eméémment,
Section 7 presents a modular way of addiagy comprehensions
to SRFI 42.

2. Concepts of comprehensions

In this section we briefly review different concepts of costpen-
sion. For the sake of clarity we will always refer to them bgader
name than just “comprehension.”

Set comprehension. The mathematical notatién

{f(@)| P(z),z € S}"

denotes the set of all values of the functigrfor arguments in
the setS and satisfying the predicate. The notation explicitly
refers to a candidate elementa predicateP, a universeS, and a
mappingf. This notation is called aet comprehension

The stated form is maybe the most frequently seen, but ittis no
the most fundamental. The most basic form of set comprebensi
is{y | Q(y)}, wherey = f(z), P(z), andz € S have been
combined intaQ(y). This concept, i.e. denoting a set defined by a
predicate (formula), is the core of what is meant by “compreh
sion.” While this concept has been in use for a long time dyea
it was not before the development of axiomatic set theory &y Z
melo, Fraenkel and others in the 1920s that the idea wasestudi
systematically. The notion of set comprehension, and itatim,
is so natural that it has gradually become a mathematicadiatd,
i.e. the reader of a mathematical article is expected tonstated it
without definition.

Comprehensions in programming languagesThe notational
convenience of set comprehension has inspired programiauing
guage constructs with similar intent: name the data straatie-
fined by an expression for its elements. For example, in thELSE
language [19, 20]

{n**2 : n in {0..9}}

denotes the set of the first ten integer squares. This camstru
however, does not only specify the result but alsakgyorithmfor
constructing the result (“execute a loop owersquare the values,
collected them in a data structure”). It is often conventeriggnore
the algorithmic aspect, but most of the time this is not paesi-
after all, algorithms do take time, or may not terminate htrar
this reason, set comprehension in mathematics and in progirsg
languages should never be confused.

Lazy comprehensions. While comprehensions were contained in
some eager (aka call-by-value) programming languages lforga
time, they only became popular once they were introducelhyr
lists in lazy (aka call-by-need) functional programmingdaages

2Instead of {” also “:” and *,” are in use.

14

| primitive | purpose

set set denote a set by properties
lazy lazy list | sequence processing
eager | side-effect| writing nested and parallel loops

with accumulation of results

Table 1. Different concepts of “comprehension.”

(mostly based on a typex-calculus with normal order reduction)
in the early 1980s. In contemporary syntax (Haskell), faregle,

[xxx | x <= [0..]]

denotes the (infinite) lazy list of all integer squares. leneents
will be made explicit once they are needed.

Such alazy comprehensioprovides a convenient notation for
processing lazy lists by means of mapping, filtering, anccata
nation. The primitive lazy comprehension (writtéexp| qual™] in
Haskell) constructs a lazy list, and the primitive lazy gener <-,
read ‘drawn from’) binds a variableo the elements of a lazy list.
In addition, several generators can be nested, elementsectiih
tered from the sequence, and local variables can be defined.

Lazy list comprehensions are widely accepted due to their co
cise notation, and good readability in most cases. Thedieffty is
as good as any (lazy) alternative. Their primary shortcgnisran
implicit tendency to overuse them, i.e. to write complicetested
lazy comprehensions where an appropriate abstraction éter b
been introduced. The decreasing readability of more caatgd
lazy comprehensions is probably due to the use of infix opesat
and the fexpr|outer..inner]” scoping rule, which is not simply
left to right.

From the point of view of programming language design, it
is most informative to recall the historical developmentlady
comprehensions [18, Chapter 7]—in particular that thee trature
was not fully understood for a long time: lazy comprehension
were first introduced as part of the NPL language (Burstall,7}
[25]. In NPL, however, comprehensions construct a set ofaibj
While this construct is closest to the mathematical notiazy sets
are not nearly as useful dszy listsare. It appears that lists and
graphs are more fundamental to programming than sets (ereztd
collections); in addition, lists (in particular lazy li}tre a universal
and natural mechanism of communication between differartsp
of a program. Consequently, set comprehensions were revitéss
and when NPL evolved into the Hope language (Burstall, 1980)
[26] lazy comprehensions where not included.

Lazy list comprehensions made their debut in the KRC languag
(Turner, 1981) [27] as “ZF expressions.” Later they werduded
in several other functional programming languages likeavita
[28, 29] (Turner, 1985). But still mathematical beauty hizsrelcted
the mind from proper programming pragmatics for some tiree: g
erators in lazy list comprehensions can denote infinitaiiens.
Hence, from a mathematical point of view the most natural way
of advancing nested generators is by (Cantorian) diagmatain,
also known as “dove-tailing.” This is the only way of readhiev-
ery pair eventually in the case of an infinite inner generatdrile
diagonalization looks like a good idea at first, it is not. Mehati-
cal “eventually” can be a long time, and in practice diagagion
is not worth a lot. Thus lazy list comprehensions evolveduio r
the generators in the straight-forward way, i.e. exhagsdiire in-
ner loop before advancing the outer loop, while the diagnima)
variants slowly went out of fashion (not without constartiling
reinvented).

3 A pattern possibly containing variables to be precise.

Specialized eager comprehensionsEncouraged by the success

simplicity and flexibility. This follows from the fact thabobps

of lazy comprehensions, designers of eager programming lan cover a large scale of complexity in programs, from simpfeete

guages recently started to include comprehensions aggirPighon
[11] contains list comprehensions. While thessger comprehen-
sionscan be quite useful, in particular for interactive use amipsc
ing, they are much less universal in nature than their lazyntay-
parts. This is explained in greater detail in Section 3.3.

Eager comprehension as abstraction of iterationSurprisingly,
this perceived limitation is again due to a lack of underdiag for
the true nature of comprehensions, eager comprehensisrtisib.
As explained above, lazy comprehensions for lists are fonefdal.
For eager comprehensions, howewile-effec(state) is the most
basic concefit

As indirect evidence of this fact consider that any eager-com
prehension can be implemented in terms of

(do-ec qualifier commandl,

which executesommandor each state in the sequence defined by
the generators and tesiealifier*. Similarly, each eager generator
can be implemented in some form of state-transformingtiberan

the sense oflo. Amazingly, this insight—which is made explicit
here—is already implicit in the design of nearly any loopilfac

for the Lisp family of languages, but it has not been ackndgyésl

as such.

While the “can be implemented by"-relation usually does not
lead to the most fundamental concept, it does so in this Gxme.
sider the alternative of implementing the eager comprebeasn
terms of (eager) lists: the resulting implementation wéliorrible!

An accumulation process (e.g. counting) cannot start thdilast
element of the enumerated sequence has been produced et sto
in a data structure. The resulting loss in performance, asetibn

of sequence length, is in fact unbounded.

Being built on this insight, SRFI 42 eventually reduces amye
prehension taio-ec, and any generator tedo—which is some
flexible but fixed loop structure (Section 5.2) based on exptate
transformation. In combination with a number of rules siifypig
the syntax and introducing a clean scoping rule, this resaolta
facility for iteration that is both efficient and convenient

3. Design considerations

In this section we discuss the main issues that affect thielnsss
of a programming language construct for eager comprehessio
or for writing nested and parallel loops with accumulatidrtte
result. We approach these issues by exploring design attees:
which design decisions exist and what are their implicato@ur
primary goal is not a coherent and complete theory, but rathe
informal discussion of the relative benefits of various gesiin
terms of convenience and effectiveness of the languageroohs
for writing programs.

3.1 Mental complexity

Maybe the most important consideration is what could besdall
“mental complexity.” As an anecdotal quantitative measiimaen-
tal complexity we propose to count the number of times therref
ence manual of a loop construct was consulted when readiesg ot
people’s loops, multiplied by the years of experience ofréealer
with that particular construct.

More seriously, we would like to point out that any concept
for eager comprehensions, or loops, represents a tradetieen

4We use the term ‘state’ here in an informal way, refering togtatus of all
bits that could possibly alter the future of an iterationtdrain Section 3.5,
we will clarify that a sequence of states may actually meaecuence of
binding environments.

15

tion to complicated nested and parallel actions with séenadi-
tions in between and numerous invariants. In effect, désigthe”
loop construct might not be the right goal to aim for, and ighti
also be necessary to predefine frequent idioms of loops. Aim
tool for flexibility is orthogonality—for example in SRFI 4&very
generator can be modified by adding another terminationitond
While the orthogonality idea is strong in Scheme, the iteeat
part of it has been somewhat neglected. (More on that in Sec-
tion 4.1.) Nevertheless, the looping constructs tuat available
in R°RS are not too complicated to remember, i.e. mental com-
plexity is relatively low. At the other extreme end, Commadsg’s
loop might be found—highly flexible but also highly complicated.
(Refer to Section 4.5.)

3.2

Scheme can be used as an interactive system or for writirg bat
programs. Although these modes are just two extremes oftine en
spectrum of human-computer interaction they are usefutratbs
tions for evaluating designs. The two modes impose conftjate-
quirements: concise notation and flexibility is most impaittto in-
teractivity, while robustness, efficiency, and readapdite primary
concerns for batch mode.

In the case of eager comprehensions, the key to efficienbgis t
use of typed state-based generators, i.e. programs thatezate
a sequence by modifying a local state (values of variablés),
state being of statically known type (e.g. an integer cajinkéote
that this does not necessarily mean the state is updatedify us
set!, it could also mean that the state is updated by rebinding
(as with tail-recursive procedures). If the state is repmésd in
boxed data structures, or if each loop iteration requirsgatching,
performance usually suffers. For this reason, most lootcocts
for Scheme (or Lisp in general) concentrate on the batch mode
only. In SRFI 42, on the other hand, the requirements of &atére
and batch mode are addressed by two different mechanisped(ty
and dispatched generators) which can be mixed freely.

Interactive use vs. batch mode

3.3 Modularity

Modularity for comprehensions means that new types of geoer
and new types of comprehensions can be added without mogifyi
the already existing generators or comprehensions. Faatke of
illustration, let us assume the new type “Fooziset” is ygaytior
comprehension.

In lazy comprehensions modularity is for free: adding a gene
ator means writing a function returning a lazy list to be used
the right-hand side of the single binding and enumeratioistact

“<-"in Haskell). Adding a comprehension means writing a func-
tion processing a lazy list, possibly constructed by a canen-
sion. In effect, the comprehension

foozi_of_list [x | x <- list_of_foozi s]

produces an element-wise copy of a Fooziset, whatever that a
ally means.

For eager comprehensions, on the other hand, modularity is a
challenge. And what is more important, modularity is the fay
creating an abstraction that goes beyond a mere idiom fquénmet
programs! Unfortunately, the importance of modularity éager
comprehensions has long been underestimated. Most desiakes
it either outright impossible to add new generators and cehgn-
sions, or this is inconvenient and cumbersome. In effeetuders
of the mechanism do not take the trouble of adding the congpreh
sions and generators they really require in the applicatimasting
a great opportunity for useful abstraction.

scoping convention
[expr|inner..outer]
[expr|outer..inner]

examples

Magma

Haskell, Python, Erlang,
(Mathematica), Swindle, ...

[inner..outer|expr]
[outer..inner|expr]
[[expr|inner]|..outer]
[outer|..[inner|expr]]

SRFI 42
Mathematica
Ruby, Perl, GAP

Table 2. Possible scoping conventions

For example, a library for number theory would include a gen-
erator enumerating the prime divisors of an integer, togrettith
its multiplicity, because that is what is needed in many géa@
library for graphs, on the other hand, would provide geroesafior
enumerating the vertices of a graph, or the edges leavindiaypa
lar vertex. All this is only possible through modularity.

For the design of SRFI 42 modularity has always been one of
the top priorities (right after efficiency), and the biggelsallenge.
The breakthrough came when | learned about the technique of
using hygienic macros in continuation-passing style (BSThis
mechanism allows fully modular definition of eager genegtand
it has prompted me to start the design again from scratchré&usdt
will be explained in greater detail in Section 5.

3.4 Scope

Eager comprehensions are programming language constaucts
writing loops. As such they include syntactic binding forfosthe
loop variables. Where there is binding, there is scope. fif@ans

a loop variable is visible to some parts of the program but not
to others—irrespective of whether this scope is specifiedaty

or whether there are simple rules to remember it. We emphasiz
this trivial fact because a conscious design of the scopedthar
critical factor for useful eager comprehensions.

In order to be able to talk about scoping, a language is needed
to represent different approaches. For this consider thenfimg
simplified view of a comprehension: a comprehension cansift
an expressiomxpr and zero or more nested qualifierser, ...,
outer. If the qualifiers are generatorisner denotes the one spin-
ning fastest anauter the one spinning slowest. Clearly, this ter-
minology only makes senseiifner is in the scope of all bindings
introduced byouter, and if expris in the scope of botinner and
outer. In other wordsexpr, inner, outer are pieces of code with a
certain scoping relation (and control flow) with respect he @n-
other. These pieces can then be composed into a comprehensio
syntax using [, ‘], and ‘|". All possibilities, together with exam-
ples, are listed in Table 2. Some arguments are:

1. It is an advantage to have eager comprehensions mimic the

notation of set comprehensions because it is widely knoen. S
comprehensions use tfexprqualifier] convention, where the
nesting of the qualifiers is not fixed and must be deduced from
the context. For simple comprehensions, this is no problain a
the mathematical notation looks extremely familiar.

. The most simple conventions nest scope in one direction
i.e. [expr|inner..outer] or [outer..inner|expr]. In a syntac-
tically impoverished language like Scheme this is partidyl
attractive.

. More complicated comprehensions will increasingly Idigk
explicitly nested loopsdo, namedtet), and possibly be mixed
with them. In Scheme, bindings are always introdubetbre

These contradicting preferences naturally lead to the puayst
ular choicelexpr|outer..inner] because it looks like a set com-
prehension (1.) while introducing bindings left-to-rigl3t); refer
to Table 2.

For SRFI 42 linearity in scope was considered most impor-
tant (2.), which together with Scheme’s preference forteftight
binding (3.) leads t¢outer..inner|expr]. In effect, SRFI 42 sports
an extremely simple scoping rule:

The bindings introduced by a generator are visible to all
subsequent expressions (qualifier or other) of the same com-
prehension, and only to these

While in principle it would also be possible to have a compile
derive the nesting of the qualifiers from the dependencytyridyis

is a fundamentally bad idea. It would allow reordering thatoal
flow by renaming variables, hashing readability in the pssce

3.5 The meaning of state

As the Scheme language supports genuine state and destructi
modification of data structures, it is important to clarifijnat is
actually meant by ‘iteration state.” More precisely, thaideer of
eager comprehensions needs to take position with respebeto
following questions:

1. What is it supposed to mean if the payload of a generator
retains (a reference to) an iteration variable, and usedétér
iterations or even outside the loop?

2. If the payload modifies an iteration variable?

3. If the payload modifies the loop-defining arguments or degin
data structures while a loop is in progress?

Before considering possible approaches to these questiece|
that Scheme uses the following model of ‘variable’ [1, Sat®.1]:

An identifier that names a location is called a variable and
is said to be bound to that location. The set of all visible
bindings in effect at some pointin a program is known as the
environment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’
value.

Concerning the first semantic question, consider the fatigyro-
gram (in SRFI 42 syntax):

((cadr (list-ec (:range n 3) (lambda () n))))

The result of this expression depends on hawinge updates its
loop variable: by rebinding or by state modification?

In the state modification model, the variahles bound to a
single location, anget! is used during the iteration to store the
integer for that iteration. In effect, the three procedurethe list
constructed by ist-ec contain a reference to tlameocation—
and the result of calling any of these procedures will be thtes
after the entire loop. So the result will be eitteor 3, depending
on the way the loop modifias In this model, iteration enumerates
a sequence of states stored in a given set of locations.

In the rebinding modek is bound to a new location for every
iteration. In this case, the three procedures each retaifiesesht
location, and the result is The rebinding model has been adopted
for the iteration constructs of Scheme [1, Section 4.2.4jbpbly
due to a desire for conceptual simplicity. Consequentlig #lso
the choice for SRFI 42. It should be mentioned that the ot
rebinding is the same as for any other tail-recursive proeednd
these are supposed to be efficient in Scheme.

5 As with everything in Scheme there is no way to enforce this IRFI 42

the body, so it is an advantage to have outer bindings appearis built on this rule; users may have reason to deviate frashht it is not

first.

16

encouraged.

Concerning the second semantic question, consider trmfoll
ing program (again in SRFI 42 syntax):

(list-ec (:range n 3) (begin (set! n 2) n))

The result of this expression depends on whethenge uses the
variablen itself to hold the state of the iteration (in which case the
result is’ (2)), or if n is just a copy of the (hidden) state of the
iteration (in which case the resultig2 2 2)).

In Scheme [1, Section 4.2.4], namgdt anddo provide access
to the state of the iteration itself. This allows arbitrargdification
of the state, which can sometimes simplify termination d¢tows.
For eager comprehensions, however, the variables visibtbe
payload might not hold the state at all (e:g.ist hides the rest
list still to be enumerated). Hence, for eager comprehessimly
two approaches make sense: Either define that the variablbkeyv
are always a copy, or define the effect of assigning to a lodphia
as unspecified. The latter approach was chosen for SRFI 42in t
name of efficiency.

Concerning the third semantic question, consider:

(let ((n 3))
(list-ec (:range k n) (begin (set! n 2) k)))

Here, the question is whetherange does access the varialdor
every termination test, or just reaisnce to set up the loop. Again,
different solutions are possible, but the choice becomsigieance
itis understood that could be replaced by an arbitrary expression.
If :range would evaluate its argument expressions repeatedly,
this could unintentionally come at a hight price. For thiasen,
SRFI 42 specifies that the argument expressions of gensrater
evaluated exactly once: before the loop is set up.

Related to the question what happens if the loop-defining-arg
ment is modified is the question what happens if the loop-ugfin
data structure is modified. As there is no way of enforcinglaing
in Scheme, and copying entire data structure (even if dsbeuld
become costly, the result of modifying a data structure evhils
being traversed is better defined unspecified.

3.6 Parallel loops

Often several loops must be executed in lockstep, e.g. catite
lines while reading a file. We will call this “parallel loopsut this
does not mean that the processing steps are executed atburr

Several mechanisms for comprehensions do support such a com

bination, for example Glasgow Haskell's extension of HHSi&&s
lazy comprehensions [17], Swindle [7], and SRFI 42 [2].

In the case of lazy comprehensions, parallel generatorekzre
tively straight-forward. Since lazy comprehensions regjexactly
one type of generator (running through a lazy list), it ifisiént to
provide “zipping” two or more lazy lists before enumeratthgm.

In effect, the usefulness of parallel lazy generators isarily de-
termined by their notation.

Parallel eager generators, on the other hand, are a gréater c
lenge. While the concept of eager comprehensions oftemwsllo
the user to ignore the details of a loop (i.e. setup, itenatand
termination of the generator), parallel generators cag balcon-
structed by interleaving the different parts of the compigener-
ators. Clearly, for this interleaving to be modular it is essary that
every generators is represented by some fixed pattern qaecess
to the code for setup, iteration, and termination.

In Scheme, the natural solution for this is representingra ge
erator by a procedure computing the next element, and esigntu
indicating termination. The setup part of a generator coott the
procedure. This approach is used for example in Swindle and f
the dispatching generator)(of SRFI 42.

cally for merging two or more component generators into glsin
parallel generator. This is exactly what thparallel generator

of SRFI 42 does, i.e. merging “fully decoratedo-loops” (Sec-

tion 5.2).

3.7 Index variables

A frequent special case of a parallel loop is with an addéldmdex
variable, i.e. a variable running throught, . . . while the elements
of another sequence are enumerated. There are two ways-of sup
porting this: by using parallel for combining an unbounded in-
teger counter (with generatointeger) with any other generator,
and by adding an index variable to the other generator itself

The first method is universally applicable to any generator,
and as such fully modular. The second method provides a more
concise notation (important for interactive use), andiitioa a little
more efficient in case the other generator uses an index anyho
(e.g.:vector). SRFI 42 supports both methods.

3.8 Early stopping

An important factor determining the flexibility of a loopirapn-
struct is a facility for terminating generators or compmiens
early. This is a different mechanism than testing qualifiadsa
guards or filters). The difference is best illustrated by xemeple.

Consider a predicate for testing if a positive integer isghm
of its proper divisors:

(define (perfect? n)
(= (sum-ec (:range d 1 n)
(if (= (modulo n d) 0))
d)
n))

Theif-qualifier prevents the inclusion of non-divisors into thes
but it does not stop therange-generator. Now we start investigat-
ing perfect numbers:

(first-ec #f (: n 1 100) (if (perfect? n)) n)
= 6

This time the entire comprehension was finished after coimgut
the first perfect number. But assume we need the numbers up to
and including the first perfect number:

(list-ec (:until (: n 1 100) (perfect? n)) n)
= (12345 86)

In this case the generat@: n 1 100) is modified to terminate
after producing the element for which the additional condition
(perfect? n) became true. (Note also that the scoping rule of
SRFI 42 stated in Section 3.4 dictates that the conditionesom
after the generator in theuntil expression.) Alternatively, the
generator is to terminateeforeproducing the element violating an
additional condition.

Both forms of early-stopping generators are needed fretyuen
For example, consider reading a line of text by reading icldial
characters from a port. Since the last line may or may not have
trailing newline, it is important to append each charaatadrto the
string, including newline. This requires the use:ahtil:

(define (read-line port)
(string-ec (:until (:port c port read-char)
(char=? c #\newline))

c))

(In fact, this was the motivating example for including boithile
and:until in SRFI 42.) The:while form of early termination is
even more frequent since it derives directly from a prectonliof

A different approach is to reduce each generator to some fixed the payload of a comprehension.

“standard loop structure,” which provides access to théviddal
parts of the generator. Then the parts can be combined siyntac

17

Coming back tofirst-ec, the two most useful and frequent
early-stopping comprehensions test a predicate on a seguén

values, stopping as soon as a violation is found. These aimepr
sions, namedny?-ec andevery?-ec in SRFI 42, can in fact be
derived fromfirst-ec.

3.9 Prefix vs. infix syntax

A trivial but highly visible matter is to what extent the sgrtmakes
use of syntactic keywords in infix position (i.e. in a pogitinot
being the first after the opening parenthesis). Ultimatklg,comes
down to personal preference in the form of a compromise batwe
simplicity and similarity with a natural language (whictntis to
be English). Most designs of comprehensions use an infixabqer
for the generators €=’ is most popular) and possibly more infix
operators for other qualifiers and options. This approachtha
definitive advantage of reducing the number of parentheses.

In SRFI 42, on the contrary, no infix operators are used at all
for the sake of (reducing) mental complexity. A comprehensi
defining somethings probably namedomethingec, and a gen-
erator defined by an object of typgpeis probably namedtype
All generators are used in the syntéxtype var arg), wherevar
is a variable, optionally followed by an index variabkpecified as
(index 1).

For illustration, Table 3 shows expressions for the sam&edes
loop in different programming languages supporting sonnen fof
comprehension. Keep in mind, though, that this is an extieme

achieved considerable acceptance in the Scheme commieaity,
ing the programmer to her own devices.

4.2 “Macros for writing loops” (Kelsey)

The “Macros for writing loops” library [4] is distributed wh the
Scheme 48 system [3] as theduce package.

It provides the syntactic formsterate and reduce imple-
menting the fundamental state based eager comprehensiere T
are predefined generators running through lists, vectwoings, in-
teger ranges, reading from a port, and executing a gengqueder
cedure (called stream). Other generators can be addednfiolty
ularly by defining a hygienic macro in continuation-passstyje
(CPS) [4, Paragraph “Defining sequence types”]. The congoreh
sions (iterate, reduce) define a single, possibly parallel, loop
based on explicit state modification.

“Macros for writing loops” is the probably first new loop con-
struct to be proposed for a long time. Moreover, the impleat#n
technique of CPS macros is the key to modularity of comprehen
sions. In effect, “Macros for writing loops” was most influih to
the design of SRFI 42, even though the resulting mechanisighs a
notations bear little resemblance.

4.3 Swindle (Barzilay)
The Swindle library [7] is a collection of modules extenditing

simple example where the meaning can be guessed at once. FOPLT Scheme system [5]. It is written for and in PLT. The module

more complicated expressions, infix notation, potentiagn with
precedences, adds to mental complexity.

4. Concrete designs

In this section we consider existing concrete designs fogiam-
ming language constructs that enable or simplify (or oldtec
loops in the Lisp-family of languages. Related construatother
programming languages are beyond the scope of this artlmle—
with the exception of lazy comprehensions, and loops withuges
parallel semantics as present in Erlang and Occam, theylsoe a
not very interesting.

The list does cover some loop-macros from other Lisp digject
most notably Common Lisp, because these constructs repisse
rious efforts to provide what is called eager compreherssiothis
article. It should be noted, however, that none of the Lisgping
constructs ever came to popularity in the Scheme community,
like SRFI 42 which surprisingly has gathered quite somenfige
already in the first few years of its existence. (My earliéstshes
date from late 2000; the SRFI got published in the beginnihg o
2003.)

4.1 Lambda, namedlet, anddo (R°RS)

In Scheme the most important construct for writing loopsraceir-
sive procedures, often in a tail recursive form. RSRS requires
implementations to provide proper tail recursion [1, S&tt.5],
recursion also serves as an idiom for iteration. A partituleon-
venient notation for defining and immediately executingursive
procedures is namerkt [1, Section 4.2.4]. In addition, Scheme
contains thelo-syntax for defining a single loop, based on explicit
state [1, Section 4.2.4].

This design represents a careful choice for including only a
few clean and powerful constructs into the language, comifuy
to the overall minimalistic design philosophy of SchemegiRe
tably, there are two major shortcomings in practice. Hirstlis
already complicated to write the ubiquitous simple loopsfe(ir
to the example in the beginning). And secondly, the comptsnen
of a loop (startup, iteration, termination) are often swattl over
large amounts of source code—even if this would be unnegessa
Yet, maybe surprising, no other mechanism for writing lobps

18

“misc.ss” of Swindle contains macros for defining eager canp
hensions in the sense of this article.

More precisely, there are predefined comprehensions fer sid
effect, making a list, numeric summation, numeric produmsint-
ing, and general reductiortdllect-of). Generators are prede-
fined for (integer) ranges, lists, vectors, strings, integexecut-
ing generator procedures, and hash-tables. Swindle afiavalel
execution of generators, early termination of compretwssihas
local bindings and side-effects. Generators can be addlgarfad-
ularly using the generator procedure interface. Swindlkesax-
tensive use of infix notation for expressing generators (@g<-

0 .. 10), qualifiers, options, and other constructs (indkd for
parallel execution).

The mechanisms specified in Swindle and for SRFI 42 are very
closely related in their principles, but differ considdsain the
details. Both acknowledge the need for modularity and wefihe:d
scope.

4.4 SRFI 40 “A library of streams” (Berwig)

Although the final form of SRFI 40 [9] does not contain compre-
hensions anymore, its draft versions did. These comprérens
were of course lazy. During the discussion of SRFI 40, it was d
cided to split the standard into a lower level part (whichdyee the
final SRFI 40) and a higher level part, including lazy compreh
sions, which was to become SRFI 41.

The lazy comprehensions of SRFI 40 provided the same bene-
fits as other lazy comprehensions, that is modularity anglgm
ity. The downside of lazy comprehensions in Scheme is a anbst
tial loss in performance due to the overhead of construdtay
streams correctly and reliably.

Recall that a lazy stream is something much more sophisticat
than a generator procedure (accessing a state hidden iostg€).
This implies that lazy comprehensions really require effichon-
strict evaluation, or strictness analysis. While thesehods are
being used in lazy languages, they are usually not available
Scheme because most programs do not require it.

4.5 Common Lisp

The Common Lisp language [10] contains several constructs f
writing loops, and nested eager comprehensions in the sétisis

language example

for k in range(n)]

.n-1) .collect {lk| k*k}}.flatten!
[K¥K || N <- lists:seq(0,9), N >= 1, K <- lists:seq(0,N-1)]
Join @@ Table[Tablel[k*k, {k, 0, n-1}]1, {n, 0, 9}]

Concatenation(List([0..9], n -> List([0..n-1], k -> kx*k)))

..< 10) (k <- 0 ..< n))

Haskell [kxk | n <= [0..9], k <= [0..n-1]]
Python [k#k for n in range(10)

Ruby (0..9).collect {Inl (0.

Erlang

Mathematica

Magma [k*k : k in [0..n-1], n in [0..9]]
GAP

PLT, Swindle (list-of (x k k) (n <- 0

R°RS, SRFI 42

(list-ec (: n 10) (: k n) (* k k)), or with typed generators:
(list-ec (:range n 10) (:range k n) (* k k))

Scheme48, reduce (reduce ((count* n 0 10)) ((r ’()))

(cons (* k k) r))
(reverse r))

(reduce ((count* k 0 n)) ((r r))

Table 3. Examples of a simple nested loop.

article. These constructs include/do*, dotimes, dolist, and
loop.

work, Wadler’s transformation of lazy list comprehensidas,
Chapter 7] is translated one to one into Lisp in order to mithée

Do is essentially the same as in Scheme, apart from the fact (infix) notation of lazy list comprehensions in Miranda. A tes-

that Common Lisp also allows dynamic binding of variablesir{g
special). Do* is a sequential-binding variant @fo. Dotimes
iterates over integer ranges, angllist over lists; these are rather
specialized control structures.

The loop facility, on the other hand, could be interpreted as a
general programming language in its own right (34 EBNF defini
tions, [10, Section 6.2 “LOOP”)). Itis an extremely flexibteecha-
nism for writing nested and parallel loops, possibly witHgatop-
ping, saving intermediate results, goto and labels, anerakather
features. Since it also supports various forms of accurmnoulaif
results, it should be seen as a syntactic form for eager cefmepr
sions. These include comprehensions for making lists, ragipg,
counting, max, min, summation, and general reduction. e s
tax is mostly based on infix notation with syntactic keywofols
clauses, options, and qualifiers.

Theloop-syntax is one of the work horses of Common Lisp. It
has evolved over a very long time towards higher and highei fle
bility, often through the use of infix syntactic keywords.eTimen-
tal complexity this has produced, however, is a big disathgmin
practice. In effect, the construct does not enjoy large faofiy in
the Scheme community.

4.6 Other iteration packages for Common Lisp

The “MIT LOOP” [35] is the predecessor of the Common Lisp
loop facility. The “SLOOP package” (Schelter) [33] is an itecati
facility generalizing MIT Lisp’sloop. The “Yale LOOP Macro”
(Ritter and Panagos) [34] is an implementation of the Yaleop
macro as described in [37]. All these loop facilities havedm-
mon that only the fundamental (side-effect) comprehenisiom-
plemented. The syntax is based on syntactic keywords in fivofix
tation and the expressive power varies. Often new typesraérge
tors can be added, using the underlying macro facility (pdoces
as first class citizens did not exist in the language).

The “Series Macro Package” (Waters) [30, 31] implements a
concept closely related to lazy comprehensions in the sefise
this article. A “series” is essentially a data structure #oftazy
list. The package contains operations for producing, Esiog,
and consuming these data structures, or acting on theireglism
The implementation is often able to transform the lazy opena
into eager evaluation, producing efficient code for frequenp
structures.

The “Lisp comprehensions” (Lapalme) [32] is an adaptation
of lazy comprehensions from Miranda into Common Lisp. Irs thi

19

sential conceptual difference between lazy and eager airepr
sions is ignored, the resulting mechanism is only of limitedful-
ness in practice.

4.7

Recently, Shivers defined a new loop mechanism [22, 23, 24] fo
Scheme (in fact more generally), underpinned by a theorgdas
the notion of “control dominance.” In a nutshell, controhdimance
is the static property that every access to a variable oagitinén
an explicit binding construct for that variable. This carenéorced
by a type system restricting the control flow graph of the paog

In practice, this concept comes down to the following: atige
are reduced to a primitive loop template consisting of 8gyavith
the control flow graph being made explicit. On top of this desi
a programming language very much in the style afoap-macro
with predefined generators, guards, and accumulators éamtist
common data structures. The single outer macro (naroep) can
be seen as the fundamental eager comprehension, the 8qaed
the fundamental eager generator (correspondirgt@c and:do
in SRFI 42).

Since the control flow is made explicit in Shiver's proposal,
the looping construct is extremely flexible. However, atspre
it is not known whether it is also inherently more powerfuhrh
the mechanism defined in SRFI 42, or essentially equivaldmns.
guestion comes down to whether the fundamental generaers (
part loop vs.:do) can be expressed in terms of each other. In
addition, it is too early to judge if the additional flexityliis
worth the associated mental complexity (8-part loop defibgd
an explicit control flow graph), and what the impact of the amin
design decisions (e.g. infix notation) is on usability. Eithvay,
Shivers’ work has potential for further clarifying the troature of
iteration in functional programs.

“The anatomy of a loop” (Shivers)

4.8 SRFI 42 “Eager comprehensions”

The term “eager comprehension” was coined for SRFI 42 [2] in
order to make sure the mechanism is never confused with the we
known lazy comprehensions. The reference implementassn-a
ciated with SRFI 42 is portable undBf RS with hygienic macros.
As the SRFI found some acceptance in the community, implemen
tations are included into several Scheme systems, incuglr
[5] and Scheme 48 [3].

The SRFI specifies an extensive set of predefined comprehen-
sions based on what makes sensR¥RS. Some infrequent com-

prehensions are left out (e.gcd-ec), while others have been The critical issue is the flexibility of the generatodo to which
added for convenience (e.gny?-ec). The predefined typed gen- all other generators are being reduced. In the skeletoreafpefer
erators enumerate the standard data strucRF&S. In addition, a to do-ec:do), the generatotdo can produce a single namadt
dispatching generator (", read “run through”) selects a generator with an arbitrary nhumber of variabled ...) and a singleif

based on the type of arguments given, e.g. the rdfige ., n— 1} guarding payloaddnd) and next iteration.

when given an exact integer. Generators can be run in parallel

and terminated early. Other qualifiers include tests (g)atdcal 5.2 Fully decorated:do

bindings, and side-effects. In practice, the simple loop structure of the previous secis too

~ The syntax is based on a simple naming convention and pre- restricted. In particular it is not possible to derive theiafles
fix notation without exception. The uniform and simple se@pi yisible to the payload from other state variables, to preepss the

rule “scope extends to the right until the enclosing comension arguments, or to terminate after executing the payloadh®other
ends” is used (Section 3.4). Generators can be added fulllf mo pang, complexity must be kept down.
ularly by defining a (hygienic) macro using continuatiorsgiag The particular trade-off chosen for SRFI 42 is based on a fair
style (CPS), or by providing a suitable generator procedDoen- amount of experimentation. It turned out that the followstgic-
prehensions can be added as (hygienic) macros. An intriogutct ture (“fully decorated do”) covers most relevant generators:
SRFI 42 from the perspective of a user, together with someexa Lo
ples, is provided in the appendix. (et (outer-binding ...)

outer-command. . .
5. The implementation of SRFI 42 (1e(§flzglf_eﬂg?ff,b'nd'ng -
In this section the overall structure of the reference inmgetation (let (inner-binding ...)
for eager comprehensions in Scheme is explained. The rémader inner-command. . .
assumed familiar with the specification as laid down in SRHR. <payload>
Moreover, it is assumed that the reader is familiar with Sukie (if not-end-2?
hygienic macro facility [1, Sections 4.3, 5.3, 7.1.5], hesm it is (loop loop-step...))))))

the primary tool for the reference implementation of SRFI 42 The :do generator specifies all variable parts, exceptfqay-

load> of course. It allows termination of the loop before or af-

5.1 A skeleton of eager comprehensions .
ter the payload has been executed. Since many generatoist do n

The following is a simplified but self-containe® {RS) working require “full decoration,” a simple transforming optimizEmpli-
skeleton of eager comprehensions: fies boolean conditions, eliminates redundahandlet, and turns
(define-syntax do-ec let without bindings integin.

(syntax-rules (if :do) Note that the use of naméaa+t allows iteration by rebinding
((do-ec q1 @2 r1 r ...) (Section 3.5), usindpop-bindingandinner-binding Updating by

(do-ec q1 (do-ec g2 rl r ...))) state modification is also possible by storing the iterasitate in

((do-ec (if test) cmd) outer-binding and modifying it usingset! within loop. In fact,

(if test cmd)) :do is the only generator in SRFI 42 that allows updating by state

((do-ec (:do 1bs ne? lss) cmd)

(do-ec:do cnd (:do 1bs ne? 1s8))) modification because no other generator passes the namieis of t

; call g in CPS, reentry at (+) variables inouter-bindingto its <<_pay|oad>>. _
((do-ec (g argl arg ...) cmd) The chosen structure fado is powerful enough, and yet still
(g (do-ec:do cmd) argl arg ...)))) restricted enough, to support the following important ¢nngions
on generators:
(define-syntax do-ec:do

(syntax-rules (:do) ; reentry point (¥) e Any generator can be modified to terminate early, based on

((do-ec:do cmd (:do (Ib ...) ne? (Is ...))) some additional condition, either beforewhile®) or after
(let loop (1b ...) (:until) the payload is executed.
(if ne? e Two or more: do-generators can be merged into a single gener-
(begin cmd ator (:parallel) enumerating all sequences simultaneously.

(loop 1s ...)))))))
For the sake of illustration, here is the complete impleraton

(define-syntax :do of the generatorlist in SRFI 42 running a variablear through
(syntax-rules () the concatenation of one or more lists, possibly with an taftl
((:do (cc ...) 1bs ne? 1lss) index variablei.
(cc ... (:do 1bs ne? 1ss)))))
. . o . (define-syntax :list
This code defines the primitive eager comprehengietec and the (syntax-rules (index)
primitive eager generatardo, utilizing a helper macrdo-ec:do ((:list cc var (index i) arg ...)
for generating code fordo. (:parallel cc (:list var arg ...)
Other generators can now be added without modifying the ex- (:integers 1)))
isting macros. E.g. after defining ((:list cc var argl arg2 arg ...)
(:1list cc var (append argl arg2 arg ...)))
(define-syntax :range ((:1list cc var arg)
(syntax-rules () (:do cc (let)
((:range cc var n) ((t arg))
(:do cc ((var 0)) (< var n) ((+ var 1)))))) (not (null? t))

the following comprehension is operational: 6The implementation is complicated by the fact that the ssapfethe

(do-ec (:range n 5) (:range k n) (display k)) variables bound must be preserved while adding the terramabndition.
= prints: 0010120123 This means it isot sufficient to add a condition toot-end-1?

20

(let ((var (car t))))
#t
((cdr £)) NN

The generator integers runs through the infinite sequence of
non-negative integers. The expressions suppliedisocorrespond
to the “fully decorated” structure given above, i@. arg) is the
loop-bindingand (var (car t)) is theinner-binding

Note that the multiple-argument case cannot easily be ctat/e
into a nested loop becausdo can only produce aingle loop;
nested loops would prevent generator-merging.

5.3 The dispatching generator

As an alternative to typed generatorg4nge, :1ist etc.) the dis-
patching generatar (read ‘run through’) of SRFI 42 first evaluates
its argument expressions and then dispatches on the tygeeof t
values. In other words; is a polymorphic generator. For exam-
ple, (1ist-ec (: x 3) x) produces’ (0 1 2) and (list-ec
(: x "abc") x) produces (#\a #\b #\c). The purpose of the
dispatching generator is making interactive use of congnsions
more convenient.

The implementation of: evaluates the arguments and calls
a global dispatching procedure. The dispatcher is to cocisa
generator procedure which is then run to enumerate the segqué
generator procedurghas a single argument. When callgaither
returns the next value of the sequence, or, when the sequance
out, it returns its argument. In the implementation, theuargnt
given to a generator procedure (3ist #f), i.e. an object only
eq? to itself.

((list-ec r1 r ...)
(reverse (fold-ec () r1r ...

cons)))))

Alternatively, the list could beet-cdr!’ed together, which may
be faster (or not).

5.5 Early-stopping comprehensions

The early-stopping comprehensions of SRFI 42, thamig?-ec
and every?-ec, are reduced to the fundamental early-stopping
comprehensiofiirst-ec with the syntax

(first-ec default qualifief expr).

This comprehension evaluates the sequence of values spduyfi
the qualifiers, stopping after the first valuessfor. If the sequence
is found empty, the result default
Call-with-current-continuation could be used foranon-
local exit, but the reference implementation does not. \&ftteye
on performance it is implemented by introducing an addélon
stopping variable and modifying each generator to stop timice
variable is found true (which is made happen when contralres

exp).

6. Performance

The top priority for eager comprehensions is combining eenv
nience and performance. In this section, the performarpecass
investigated more quantitatively.

The Sieve of EratosthenesAs an example we consider comput-
ing the primes in{2,...,n — 1}, n > 0, by the algorithm known

For the sake of modularity, the dispatcher procedure can be g5 the “Sieve of Eratosthenes.” The algorithm (200 BC) tioks

retrieved and changed. Moreover, there is a macro produzing
generator procedure from a typed generator; this greatiplgies
the definition of dispatching generators.

5.4 Grouping qualifiers with nested

In addition to defining new generators in a modular way it &al
important to define new comprehensions. While in principéae is
no problem (after all every eager comprehension can be egltaoc
do-ec), the fact that there can be an arbitrary number of qualifiers
complicates the definition of new comprehensions. In thestvor
case, a variation afo-ec must be provided every time.

A simple trick being used in SRFI 42 keeps the amount of code
for a new comprehension low. The syntactic keywnedted can
be used for grouping an arbitrary number of qualifiers intmngle
equivalent qualifier understood lag-ec. This is illustrated by the
definition of a folding comprehension:

(define-syntax fold-ec
(syntax-rules (nested)

((fold-ec x0 (nested q1 ...) qrir2r ...)
(fold-ec x0 (nested q1 ... @ rl1r2r ...))

((fold-ec x0 q1 g2 r1 r2 r ...)
(fold-ec x0 (nested q1 q2) rl r2 r ..

((fold-ec x0 expr f)
(fold-ec x0 (nested) expr f))

)

((fold-ec x0 qualifier expr f)
(let ((result x0))
(do-ec qualifier
(set! result (f expr result)))
result))))

The last case of the macro implements the functionality ffer t
case that there is exactly one qualifier; the other casesahtitro
collect all qualifiers into a single one. Now the list compaion
can be defined as

(define-syntax list-ec
(syntax-rules ()

21

all true multiples of the next not yet ticked off number—ahe t
primes are left over. The following program represents ittlestin
a strind, and uses SRFI 42 for the loops.

(define (primes n)
(let ((p (make-string n #\1)))
(do-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
(:range i (* 2 k) n k)
(string-set! p i #\0))
(list-ec (:range k 2 n)
(if (char=? (string-ref p k) #\1))
k)))

This program is compared with three alternatives:

e The typed generatorsrange are replaced by the dispatching
generator: of SRFI 42.

e The comprehensions are implemented in Swindle.

e Thedo-ec isreplaced by two nestetb-loops, and thaist-ec
is replaced by a tail-recursive namagdt constructing the re-
sult list.

Figure 1 shows the execution time, divided by A number of
things can be observed.

Firstly, all four alternatives have reasonable perforneaand
are able to compute the primes beld® in less thanl0 s. Sec-
ondly, only the “DO loop” variant shows the slow increaseentpd
for this ©(n In1n n)-algorithm. The other curves exhibit lower or-
der terms, probably due to the overhead of setting up a loopielw
is most pronounced for the procedure-based variants (“8RE)”
and “Swindle”).

Linear model of execution time The preceeding example is based
on a meaningful algorithm, which is important for a reatistn-
pression. Now we turn to synthetic algorithms with the golal o

7 A wasteful but practical alternative to arrays of bits, whare absent in
Scheme itself and its portable libraries.

16 T T T T r T T
SRFI42 () —— Swindle +
14 & Swindle - . SRFI42 () ~x
SRFI 42 (:range) ~ 10¢ DOloop * 1
e 121 N DO loop 1 g SRFI 42 (:range) =
S =
> 10t >
s} 2
E 8 [© 5-&\
> £) N
S et 1 2 L
[k=) | ‘
=] al] g 1 ;
2+ B = o -~) o
O I I I I I I I
10 100 1000 10000 100000 1e+06 1 10 100 1000
n m

Figure 1. The “Sieve of Eratosthenes.” MzScheme 208, Intel Pen- Figure 2. Two nested loopsr(times outeryn times innerpm =

tium Il Mobile, 1 GHz, Win2k. 2%4), MzScheme 208, Intel Pentium 1l Mobile, 1 GHz, Win2k.

obtaining quantitative information using an abstract madehe generator: stream enumerates a lazy stream, i.e. runs a variable

execution time. through the elements. For the streams we use SRFI 40 [9]hwhic
It is reasonable to assume that the overhead of a loop growsprovides (even) lazy lists called “streams” as new datecsires.

according to a linear model consisting of a fixed startup loead With madification, it would also be possible to use simpledod

to and some constant overheAd per iteration. The objectiveisto streams, for example those presented in [36].

determinet, and At from measured execution times. For this we The comprehension expression

execute different implementations of the following nedteap: (stream-ec qualifier expn

for k= 1.ndo fori = 1..m do payloadod od, constructs a stream for the sequence that a correspobilitgec

wheren andm integer parameters. In order to observe both startup- would create. The use etream-ec is best explained by example:
and iteration-overhead, the numberof inner iterations is varied,
while fixing nm for obtaining sufficient total time. The data points
in Figure 2 show the result.

Ignoring the time spent on the inner payload, startup- and (stream-null? s)
iteration-overhead can readily be read off the curves ds steart = [prints: 0] #f
and end value. By fitting

(define s
(stream-ec (: x 10) (begin (display x) x)))

(stream-null? (stream-cdr s))

t(n,m) = (1 +n)to + (n + nm)At = [prints: 1] #f
tob:h? dg-ta points in Figure 2, slightly more accurate egtmare (list-ec (:stream x s) x)
obtained: = [prints: 23456789] (0 1 .. 9)
At .
Swindle | goégs I 2{1”5 In other words, the payload expressittegin (display x) x)
SRFI42 ¢) 6.59 1‘21 is to be evaluated on demand, resulting in the digits beingqut
DO loop 136 1.15 as shown.

. It is an impressive illustration of the powerful mechanisms
SRFI 42 (range) [1.38 0.60 available in Scheme thaitream-ec can in fact be defined in a
The curves associated with these parameters are showruirefzg modular way. A possible implementation:
The particular values obtained here should be taken as &n ind

cation, only. They are heavily dependent on the executioseiaf (define-syntax strean-ec

(syntax-rules (nested)

the underlying Scheme system (interpreted, byte-codeative). ((stream-ec (nested ql ...) q etcl etc ...)
Nevertheless, there is a remarkable gap between the eagper co (stream-ec (nested q1 ... q) etcl etc ...))
prehensions based on procedures and on direct state mbdifica ((stream-ec g1 g2 etcl etc ...)
(“SRFI 42 (:range)”). As a rule of thumb, procedures cost a factor (stream-ec (nested q1 g2) etcl etc ...))
of two per iteration and five to ten in startup. We expect tldp g ((stream-ec expression)
to widen for Scheme systems with more sophisticated cotipila (stream-ec (nested) expression))
but did not investigate this quantitatively. ((stream-ec qualifier expression)
(let ((value #£)

. . (produce-value #f)

7. Eager comprehensions “lazified” (next-value #f))

(define (tail)
(stream-delay
(if (call-with-current-continuation

For what it is worth, eager comprehensions can be turned lazy
in a fully modular way. More precisely, it is possible to defin

the fundamental lazy list comprehensianifeam-ec that is) in a (lambda (cc)
such way that angagergenerator can be used with it—without (set! produce-value cc)
modifying the macros for the generators. Conversely, ttgerea (next-value #f)

22

#£))
(stream-cons value (tail))
stream-null)))
(define (make-stream)
(stream-delay
(if (call-with-current-continuation
(lambda (cc)
(set! produce-value cc)
(do-ec
qualifier
(call-with-current-continuation
(lambda (cc)
(set! next-value cc)
(set! value expression)
(produce-value #t))))
(produce-value #f)))
(stream-cons value (tail))
stream-null)))
(make-stream)))))

The macro combines all qualifiers into a single one usiegted

(Section 5.4) and uses the fundamental eager comprehension
do-ec for enumerating the sequence defined by the qualifiers.

Call-with-current-continuation iS used to exilo-ec non-
locally after producing a value and possibly resuming they ve
same loop again later.

The eager generator exhausting a stream can be defined as

follows:

(define-syntax :stream
(syntax-rules ()

((:stream cc var arg)

(:do cc (let O))
((s arg))
(not (stream-null? s))
(let ((var (stream-car s))))
#t
((stream-cdr t))))))

Since:stream is just another generator, it can of course be used in
stream-ec—where it is executed lazily. And sing®-ec under-
stands guards and local definitions, we have implementetiexi
is to implement fotazy comprehensions in Scheme.

The bad news isall-with-current-continuation and the
streams of SRFI 40 have a rather high price in terms of time

to the idea of “CPS macros.” Without the discussions with &/ik
SRFI 42 would probably not exist. Also | would like to thankilPh
Berwig, the author of SRFI 40 (‘A library of streams’) for use
ful discussions on his lazy comprehensions for Scheme.&aProb
bly the biggest source of inspiration for my work presenteceh
were Richard Kelsey’s “Macros for writing loops”—even tlybu
the casual reader might not suspect this. | would like to khan
Philips Research for making this work possible, and in patar
my colleagues Philippe Coucaud, Zbigniew Chamski, and Kano
Gelder for their valuable remarks. Finally, | would like tank the
anonymous referees for their corrections and discussiopattic-
ular the third referee brought up the important issue of seits,
and provided an example exposing the 'update by rebind vs. by
side-effect’ choice.

References

[1] R. Kelsey, W. Clinger, and J. Rees (eds.): RevisBgport on the
Algorithmic Language Scheme. 20 February 1988+. schemers.
org/Documents/Standards/R5RS
[2] S. Egner: SRFI 42 “Eager Comprehensions”. Finalizeg¢t Ju2003.
srfi.schemers.org/srfi-42
[3] R. Kelsey and J. Rees: The Scheme 48 Systa18. org
[4] R. Kelsey and J. Rees: “Macros for Writing Loops.” Theduce
library of Scheme 48 [3]s48.0rg/1.2/manual/s48manual _53.
html
[5] The PLT Team: PLT Schemeww.plt-scheme.org
[6] PLT MzSchemewww.plt-scheme.org/software/mzscheme
[7] E. Barzilay: The Swindle Library for PLT Scheme [5]. Thellect-
macro of the modulenfisc.ss.” www.cs.cornell.edu/eli/
Swindle/misc-doc.html#collect
[8] E. Hilsdale, D. P. Friedman: Writing Macros in Continiagt-Passing
Style. Scheme and Functional Programming 2000. Septendfér. 2
[9] P. L. Bewig: SRFI 40 “A Library of Streams.” Finalized Augt 22,
2004.srfi.schemers.org/srfi-40
[10] LispWorks Ltd.: The Common Lisp HyperSpec (1996-2005)
Chapter 6 “lteration."www.lispworks.com/documentation/
HyperSpec/Body/06_.htm

[11] G. van Rossum: Python Reference Manual, Release 3@.March
2005. Section 5.2.4 “List Displaystiww . python.org/doc/2.4.
1/ref/lists.html

and space consumption in most major Scheme systems. For this[12] Wolfram Research: Mathematica Version 5.0, Docuntésrtaof

reason, the lazy comprehensions defined in this sectioricchoti

be understood as a serious proposal for a programming lgegua
construct—but rather as of great educational and entartpualue.

It should be emphasized, though, that lazy comprehensambe
very efficient, provided they are compiled properly.

8. Conclusions

Comprehensions are a particularly concise notation fotingi
nested and parallel loops with accumulation of resultshingast
few years they have come to popularity in many programming la
guages, including Python and Erlang. When used wisely, cemp
hensions can improve readability, modularity, and poggileffor-
mance.

However, unlike the lazy list comprehensions (ZF expressio
of call-by-need functional languages (like Haskell), arespond-
ing concept in a call-by-value setting (like Scheme) hasta
tially different requirements in order to qualify for a geaky use-
ful programming construct. SRFI 42 is a specific design ainah
this goal. It is an impressive demonstration of Scheme’s fiexa
ibility that that the mechanism specified in SRFI 42 can belémp
mented naturally without extending the language itself.

Acknowledgements Mike Sperber has provided important input
for eager comprehensions in Scheme, in particular he pbime

23

Table. documents.wolfram.com/mathematica/functions/
Table

[13] W. Bosma, J. Cannon: Magma (V2.11, May 2004) Documéntat
of “Sets” and “Sequencesthagma.maths.usyd. edu.au/magma/
htmlhelp/part2.htm

[14] Ericsson AB: Erlang, Reference Manual (Version 5.4S%ction 6.22
“List Comprehensions.%iww.erlang.se/doc/doc-5.4.3/doc/
reference_manual/expressions.html#6.22

[15] Martin Sclonert et. al.: GAP—Groups, Algorithms, and Program-
ming, (Version 3 Release 4 Patchlevel 4) LehrstuhibMathematik,
Rheinisch Wes#lische Technische Hochschule, Aachen, Germany,
1997.

[16] S. L. Peyton Jones (ed.): Haskell 98 Language and Ligsafhe Re-
vised Report, December 2002. Section 3.11 “List Comprebass
www.haskell.org/onlinereport/exps.html

[17] The Glorious Glasgow Haskell Compilation System Us&uide,
Version 6.4. Section 7.3.4. “Parallel List Comprehensiorsw .
haskell.org/ghc/docs/latest/html/users_guide/syntax-
extns.html#parallel-list-comprehensions

[18] S. L. Peyton Jones: The Implementation of FunctionagPamming
Languages. In particular, Chapter 7 “List Comprehensid¢psiilip
Wadler). Prentice-Hall, Hemel Hempstead, 1987.

[19] R. B. K. Dewar: The SETL Programming Language. 1979.

[20] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Sdbem, E.:
Programming with Sets: An Introduction to SETL. Springersg,

New York, 1986.

[21] R. K. Dybvig: The Scheme Programming Language, 3rdicit
MIT Press 2003. Section 9.3. “A Set Constructanw . scheme.
com/tspl3/examples.html#./examples:h3

[22] O. Shivers: “The Anatomy of a Loop: a Story of Scope and
Control.” Presentation given &aniel P. Friedman: A Celebration
(Bloomington (IN), December 3, 2004yww.cs.indiana.edu/
dfried_celebration.html

[23] O. Shivers: “The Anatomy of a Loop: a Story of Scope anai@d.”
Presentation given at Laboratoire d’Informatique de P&riBaris,
January 24, 2005yww.1ip6.fr/fr/liens/organise-fiche.
php?theme=5&RECORD_KEY (organise)=id&id(organise)=98

[24] O. Shivers: “The Anatomy of a Loop: a Story of Scope andhi@al.”
To be published at ICFP 2005, Tallinn, Estonia.

[25] R.M. Burstall: Design Considerations for a FunctioRabgramming

Language. Infotech State of the Art Conference: The So#war

Revolution, Copenhagen, October, 1977.

R. M. Burstall, D. B. MacQueen, and D. T. Sannella: Hope:

Experimental Applicative Language (1980). Conference &®PL

and Functional Programming archive Proceedings of the 2G8q

Conference on LISP and Functional Programming, pp. 136-143

Stanford University, California, United States.

D.A. Turner: The Semantic Elegance of Applicative Laages, in

Proceedings of the 1981 Conference on Functional Progragimi

Languages and Computer Architecture 1981, Portsmouth, New

Hampshire, USA.

D.A. Turner: Miranda: A Non-strict Functional Languagvith

Polymorphic Type. Proceedings of a Conference on Fundtiona

Programming Languages and Computer Architecture, pp.,1-16

Nancy, France, 1985.

[29] D.A. Turner: An Overview of Miranda. ACM SIGPLAN Notisg
Volume 21, Issue 12, December 1986.

[30] R. C. Waters: The Series Macro Package. ACM SIGPLAN Lisp
Pointers, Volume lll, Issue 1, July 1989.

[31] R. C. Waters: The Series Macro Package for Common Lisp.
series.sourceforge.net

[32] G. Lapalme: Implementation of a “Lisp Comprehensionadvbo.
ACM SIGPLAN Lisp Pointers, Volume 1V, Issue 2, April 1991.

[33] W. Schelter: The SLOOP lteration Facility (198&ww-cgi.cs.
cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/
code/iter/loop/sloop/0.html

[34] F. Ritter, J. Panagos: YLOOP: Portable Implementatibthe Yale
LOOP Macro (1986)www-cgi.cs.cmu.edu/afs/cs/project/
ai-repository/ai/lang/lisp/code/iter/loop/yloop/0.
html

[35] Massachusetts Institute of Technology: The MIT LOORck&(1980,
1986)www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/
ai/lang/lisp/code/iter/loop/mit/mit_loop.cl

[36] H. Abelson, G. J.Sussman, J. Sussman: Structure aerptrtation
of Computer Programs. 2nd ed., MIT Press, Cambridge (MA9619

[37] E. Charniak, C. K. Riesbeck, D. McDermott, and J. R. Meeh
Artificial Intelligence Programming, 2nd ed. Lawrence Bdin
Associates, 1987.

[26]

[27]

(28]

24

Appendix: Summary of SRFI 42

For illustration, this appendix contains a brief introdant to
SRFI 42 from a user’s perspective, together with examplés. T
actual specification is available at

http://srfi.schemers.org/srfi-42/srfi-42.html

In its most simple form, a comprehension according to SRFI 42
looks like this (its value after>):

(list-ec (: i B) (¥ i i)) => °(0 1 4 9 16).

Here,i is alocal variable sequentially having the valQes, . . . , 4,
and the squares of these numbers are collected in a listhvigic
the result. The following example illustrates most coniarg of
SRFI 42 with respect to nesting and syntax:

(list-ec (: n 1 4) (: i n) (list n 1))
=>’((10) (20) (21) (30) (31) (32)).

In this example, the variablefirst has value 1 then 2 and finally 3.
For each value of, the variablei assumes the valuésl, ... n—
1 in turn. The expressioflist n i) constructs a two-element
list for each binding, and the comprehensiarst-ec collects all
these results in a list.

Eager comprehensions in the sense of SRFI 42 are just hggieni
macros. The basic syntactic form of a comprehension is

(do-ec qualifier* command,

i.e. zero or morgualifierarguments andeommandargument. The
do-ec comprehension enumerates the sequence of binding envi-
ronments specified by the qualifiers and for each such envieon
evaluatecommandor side-effects. In a similar fashiofsum-ec
qualifier* expressioh sums the values obtained by evaluaténg
pressionfor the sequence of binding environments specified by
qualifier*. If qualifier” is empty (i.e. no qualifiers at all) thezx-
pressionis evaluated once. The eager comprehendibst-ec
constructs a list of the values of its expression.

The most common qualifiers are generators. For example,
(:range i 5) runs variablei throughO,1,...,4. The genera-
tor (: i 5) does the same but uses the type of its argumensji.e.
to decide that it is a range of exact integers that is to be enated.
In every iterationi is bound to a new location where the integer
for that iteration is stored. Other qualifiers are for filteyie.g.(if
condition), or for side-effect, e.g(begin command. The full
syntax of SRFI 42 is listed with comments in Table 4.

Checklist for adding comprehensions and generators

The following checklists can if the user wants to add applica
specific comprehensions and generators in the style of SRFI 4
For adding an application-specific comprehension:

1. Usethe syntaxaccu-ec <outers qualifier* <inners), with
<outer> being a fixed list of parameter expressions (e.g. for
default values)<inners being a fixed list inner expressions
(usually justexpressioly andaccurefering to the accumulation
process that is being executed.

2. Use the left-to-right scoping rule as much as possible.

. Avoid syntactic keywords, in particular in infix position

4. Evaluate parameter expressions exactly once, or at mast o
if their evaluation is control-flow dependent. Implemeris thy
insertinglet.

5. Make sure the implementation does not copy macro argenent
because that might lead to exponential growth in code sizmwh
nested.

w

For adding an application-specific typed generator:

expression— comprehensiof. . .
comprehension-
(ordinary-ec qualifief expressioh

| (vector-of-length-ec k qualifier” expressioh
| (fold-ec zo qualifier" expressionfz)
| (fold3-ec xo qualifier: expressionf; f2)
| (do-ec qualifier' command
| application-specific-comprehension
ordinary-ec—
list-ec | append-ec | string-ec | string-append-ec
| vector-ec | sum-ec | product-ec | min-ec | max-ec
| any?-ec | every?-ec | first-ec | last-ec
qualifier —
generator
| (if expressioh
| (not expressioh| (and expressioh) | (or expressioi)
| (begin command expressioh
| (nested qualifier”)
generator—
(: variables expression
:1list variables expressioh)
:string variables expression)
:vector variables expression)
:integers variable9
:range variables range-limits
:real-range variables range-limits
:char-range variables min max
:port variables expressior read])
:dispatched variables dispatch expressioi
:let variables expression
:parallel generator)
:while generator expression
:until generator expression
:do [(let (ob*) oc*)] (Ib*) nel?
[(Let (ib*) ic*) ne2?] (Is*))
| application-specific-typed-generator
range-limits— stop| start stop| start stop step
variables— identifier[(index identifier)]
xo, f1, f2 min, max read, dispatch start, stop step— expression

A A AAAAAAAAAA A A

evaluateexpressiorfor the sequence of binding
environments (or states) specified by the qualifiers
vector-length of result known to bé

fo(xn, fo(xn-1, - fa(x1,20) - - -)) fOr z1..,, from expression
fo(@n, fo(@n_1,- - fa(z2, fr(z1))), 0rzoif n =0
evaluatecommandor side-effect

define using hygienic macro, use checklist

early stopping (aka short evaluation)

insert test (aka guard or filter)
abbreviate(if (not expressioh) etc.
insert side-effect

syntactic grouping of qualifiers

dispatch on type (list,string,vector,integer,real, qiant)
elements of a (proper) list

characters of a string

elements of a vector

the infinite sequence, 1, . ..

exact integer range

real (either all exact, or all inexact) range

character range up to and includinmax

read defaults taread

callsdispatchto construct generator procedure to run
single value sequence (for introducing intermediate el
interleaved execution, until one a generators is exhausted
executggeneratorwhile expressions non-#f
executegeneratoruntil (and incl.)expressions non-#f

loop by namedtet, possibly decorated

define as hygienic macro in CPS, use checklist
from start (default0) to stop(excl.) bystep(default1)
index variable runs through 1, . . .

Table 4. Syntax of SRFI 42.

1. Use the syntax(:type var| (index i)] <args>), with

(product-ec (:range k 2 (+ n 1)) k))

<args> being the argument expression(s) defining the loop.

Heretypeindicates the type of object to enumerate through.

2. Use the syntax:type vak---var, [(index i) | <args>)
if there are always exactly variables to iterate through.

3. Use the syntax(:type (var*) [(index i) | <argss) if
there is a variable number of variables to iterate through.

. Use the left-to-right scoping rule as much as possible.
. Avoid syntactic keywords, in particular in infix position

~N o oA

. Update the iteration state by rebinding, i.e. make sureaai
ables visible to the payloaddr, i) are bound either itb* (loop
bindings) or inib* (inner bindings).

8. Support multiple arguments if that makes sense, but aerial
arguments.

Examples

The factorial of a non-negative integer:

(define (factorial n)

. Make sure argument expressions are evaluated exacty onc

The sum of the divisors of a positive integer:

(define (sigma n)
(sum-ec (:range d 1 (+ n 1))
(if (zero? (modulo n d)))
d»

Pythagorean Triples with entries not exceedinge. (a, b, ¢) such

thata? + > = cZ andinteged < a <b<c<n:

(define (pythagoras n)
(list-ec (:let sqr-n

(:range a 1
(:let sqr-a
(:range b a (+ n 1))
(:let sqr-c (+ sqr-a (* b b)))
(if (<= sqr-c sqr-n))
(:range ¢ b (+ n 1))
(if (= (* ¢ c) sqr-c))
(list a b ¢)))

(%
(+
(*

n n))
n 1))
a a))

Quicksort with naive choice of pivots (stable):

25

(define (gsort xs)
(if (null? xs)
*0
(let ((pivot (car xs)))
(append
(gsort (list-ec (:list x (cdr xs))
(if (< x pivot))
x)
(list pivot)
(gsort (list-ec (:list x (cdr xs))
(if (>= x pivot))
x))))))

Approximation ofr by Bailey-Borwein-Plouffe’s hex-digit extrac-
tion formula, i.e|(pi-BBP m) — | < 16~ ™ form > 1.

(define (pi-BBP m)
(sum-ec (:range n O (+ m 1))
(:let n8 (x n 8))
(x (- (/ 4 (+ n8 1))
(+ (/ 2 (+ n8 4))
(/ 1 (+ n8 5))
(/ 1 (+ n8 6))))
(/ 1 (expt 16 n)))))

Adding two vectors of equal length (simple program):

(define (vector+ x y)
(vector-ec (:parallel (:vector xi x) (:vector yi y))
(+ xi yi))

Adding two vectors of equal length (no intermediate lists):

(define (vector+ x y)
(vector-of-length-ec (vector-length x)
(:range i (vector-length x))
(+ (vector-ref x i) (vector-ref y i))))

Reading a line from an input port, returning all characteradr
(including newline if present), or returning the eof object

(define (read-line port)
(let ((line
(string-ec
(:until (:port c port read-char)
(char=? c #\newline))
c)))
(if (string=7 line "")
(read-char port) ; eof-object
line)))

Reading a file, returning a list of the lines:

(define (read-lines filename)
(call-with-input-file
filename
(lambda (port)
(list-ec (:port line port read-line) line))))

26

Abstraction and Performance from Explicit Monadic Reflection

Jonathan Sobel Erik Hilsdale R. Kent Dybvig
SAS Institute Google Inc. Daniel P. Friedman
jsobel@acm.org eh@acm.org Indiana University

{dyb,dfried}@cs.indiana.edu

Abstract by Wadler [18], Hutton [7] and Meijer [8, 9], and Bird [1]. In

a change from these presentations, however, the programs in
éhis paper are written in the strict language Scheme [10] and
include uses of Scheme’s syntactic-extension mechanism
"(macros). We paraphrase the material from these other texts
in order to familiarize the reader with our terminology and
notation.

One might reasonably ask why, when exploring a topic
that involves very typeful monads and their associated op-
erators, would the presentation use the dynamically-typed
language Scheme? The answer is two-fold. First, the goals
of this work are more in the realm of software engineer-
ing than theory. The monads and types are useful vehi-
cles for understanding the programs, but the true target is
easy-to-write, easy-to-maintain, efficient software. @ho
ing Scheme should naireventthe use of monads for struc-

1. Introduction turing programs. S_econd, this presentatioq relies heamily_

. syntactic abstraction as a means of turning programming
The use of monads to model effect-laden computation hasaiterns into language extensions, which can then be re-
become commonplace. This work aims to show that a fuller jmiemented as more efficient patterns. Such an approach is
appreciation of the_ theory of mongds can improve the cor- sadly impossible in any common statically-typed language.
rectness and efficiency of such implementations. We ex- |4 section 3 we draw an analogy between monads and
plore this through a single application domain: parsingstri abstract data types. Such an analogy is not new; the exam-
we approach parsing from the functional perspective. Next, ple of the simple state monad with “get” and “set” opera-
we observe some of the shortcomings of overly simplistic {jons s often presented as an abstract data type. The prob-
monadic programming and observe what happens when Weje, js that in larger, more realistic examples—such as func-
change our language to fit the theory more closely. We thenyjona| parsing—the number of operations that requires ac-
explore the efficiency improvements such a foundation al- ¢ess 10 the monad's underlying representation is muchrarge
lows us. Finally, we point toward how the parsing example \yhen seen in this light, it becomes clear that a significant
we use may be generalized. _ o portion of the typical monadic-style program is treated as

Most of the presentation in the following section is not it jt fa)is inside the abstraction boundary of the abstract
new. Using monads for parsing has been discussed in detailyaia type. To complicate matters, it is very difficult for the

* This work was supported in part by the National Science Fatiod under provider Of_the monad _data type to gue_ss every opere_m_on
grant CCR-9633109. that real client code might need. A review of the defini-
tion of monads leads us to monadic reflection, which pro-
Permission to make digital or hard copies of all or part o thiork for personal or vides the I’Ight tools to draw ,a new boundary between _the
classroom use is granted without fee provided that copiesarmade or distributed very few core monad operations and the many operations
for profit or commercial advantage and that copies bear titiseand the full citation H) H
on the first page. To copy otherwise, to republish, to posteowess or to redistribute that need t(_) be part|ally_ aware_ of the monad's underlylng
to lists, requires prior specific permission and/or a fee. representation. We rewrite portions of the code from Sec-
Sixth Workshop on Scheme and Functional Programmir@eptember 24, 2005, tion 2 in a cleaner style using monadic reflection. The re-
Tallinn, Estonia. . . .
Copyright(© 2005 Jonathan Sobel, Erik Hilsdale, R. Kent Dybvig, DanieFifed- flection operators, together with the standard monadic pro-

man. gramming operators, provide enough expressiveness for us

Most of the existing literature about monadic programming
focuses on theory but does not address issues of softwar
engineering. Using monadic parsing as a running example
we demonstrate monadic programs written in a typical style,
recognize how they violate abstraction boundaries, and re-
cover clean abstraction crossings through monadic reflec-
tion. Once monadic reflection is made explicit, it is possi-
ble to construct a grammar for monadic programming that is
independent of domain-specific operations. This grammar,
in turn, enables the redefinition of the monadic operators as
macros that eliminate at expansion time the overhead im-
posed by functional representations. The results are fery e
ficient monadic programs; for parsing, the output code is
competitive with good hand-crafted parsers.

27

to construct a grammar for the sublanguage of monadic the wrong way. We want primarily to think about the parser’s
programs. This grammar supports three-layer monadic pro-results. Parsers, however they operate, produce trees. Yet
gramming: the monad definition itself, representationtawa most of the type we specified for parsers is not about trees;
operators, and representation-independent client cdae. T it's about the wiring that gives us the trees. Instead, Jass
three-layer model stands in contrast to the typical tw@tay say thatparsing(not parserd is one way to describe tree-
model where everything other than the client code is treated producing computation. Henceforth, we shall refer to tree-
as part of the core monad definition. producing computations (or justee produceryinstead of
Once we have a specification of monadic programs, we parsers.
are in a good position to optimize them. This we do by Trying to talk about computations presents us with a
changing the definitions of the monadic operators in Sec- problem: how do we manipulate computations in programs?
tion 4 while leaving their interfaces intact. All unnecagsa We need something to act as a “representation of a tree pro-
closure creation is eliminated, and the work of threading ducer.” Exactly how we represent these computations de-
store/token-stream values through the computation is han-pends on what aspects we want to model. Above, in the
dled entirely at expansion time in the new definitions. Pro- context of traditional parsing technology, we arrived atdu
grams that conform to our monadic-programming grammar tions of a certain shape as our representations. Spegificall
need not be rewritten at all to benefit from the optimizations our representation modeled the threading of a token stream
Furthermore, all the optimizations are handled at the sourc through the computation [16], as well as the possibility of
level by user-defined macros, not by a new compiler pass.failure. We call this ghreaded functional representatiarf
The approach described here is relevant for any compositiona tree producer. Let’s express this abstraction in the tgpe c
of store-like monads, possibly composed with a lifting er er structor Producer:

ror monad.
Producer(a) = Tokens — (o + ErrMsg) x Tokens

2. Parsing . :
)] Thus, Producer(Tree) is our representation for computa-
Parsers are often described as functions from token stream$ions that produce trees.

to abstract syntax trees: The sum type can be represented in many ways in

Scheme. For injecting values into the left and right sides
of the sum, we use the operatansl andinr, respectively.
This characterization does not account for parsers majfyi | "€Se operators are polymorphic over the number of injected
the token stream. That is, by the time the parser producesYa@lues, s(inl x y z) is acceptable usage. For dispatch-
a tree, the token stream no longer has its original contents.iNd 0N the two sum cases, we use sh-case form.

Parser = Tokens — Tree

Thus, the type needs to be revised: (example okum-case)=
(sum-case (inl 5 2)
Parser = Tokens — Tree x Tokens (xy) (+ x¥y))

((a b) (- ab)))
It could be the case, though, that the parser fails to coetstru The value of this expressions A portable implementation
atree (for example, if the input is malformed). To handls thi ¢ inl, inr, andsum-case appears in the appendix. Addi-
possibility, we lift the Tree type to Tree + ErrMsg: tional options for representing sums and a discussion af the
performance implications appears in Section 4.3.

It would be inconvenient to write parsers if we had to
explicitly manage values of th&roducer types. Monads
provide just the right additional structure for manipuigti
these values, so that programs have a consistent style, and

Parser = Tokens — (Tree + ErrMsg) x Tokens

(This compact type will continue to appear in the remainder
of this article, but for efficiency the programs actually use

Parser = so that the details of thé&roducer types are abstracted
Tokens — (Tree x Tokens) + (ErrMsg x Tokens) away [13, 14, 19].

which is isomorphic to the prior type by the distributive =~ TO make this claim more concrete, let us construct a

property.) little program in Scheme for parsing natural numbers (non-

The preceding paragraph follows the standard sequenceegative integers). We begin with a version writeithout
of types and justifications to arrive at a desirable type for the benefit of monadic operators. Even those readers who are

parsers, but we find that the effect is to direct one’s attention already quite familiar with monads may find it interesting
to follow the derivation of monadic structure as a kind of

1 Allowing a failed parse to return a new token stream is ndtyetandard “pattern-mining” via syntactic abstraction.

in the literature. Why do we allow it here? Because implemgons based

on real imperative input streams often modify the streanrmevrea failed

parse. In fact, such behavior is often desirable in a robarsigp, to eliminate

nonsense tokens from the input and continue to make progress

28

2.1 Parsing Natural Numbers (integer producer, given all digijs=
(lambda (ts)
(inl (string->number
(list->string (cons d ds)))
ts))

Naturally, the token stream is guaranteed to be unchanged in
a simple computation.

A program that reads the digits in its input and parses num-
bers would be more typically described as scanning, not
parsing, but if we take individual characters as our tokens,
the distinction becomes largely moot. Here is a grammar for
natural numbers:

(natura} — (digit) (more digity Having completed the definition that handles the first pro-
(more digits — (digit) (more digit$ duction in the grammar, we move on to defining a procedure
| (empty that handles thémore digits non-terminal. More specifi-
cally, we definemore-digits to be a nullary procedure—
The entry point for our program is the proceduegural, 2 like natural—that gives us a producer. Wheregastural
which is intended to instantiate an integer-producing com- Makes an integer-producing computatinore-digits in-
putation: stantiates a computation that produces a list of characters

(long version ohatural)= The grammar fofmore digits specifies two alternative
(define natural productions: one likgnatura} and one empty. Assuming
(lambda O that we want to absorb as many contiguous digits as possible
(integer producer fonatural))) into the number, we begin by trying the first alternative. If
it fails, we accept the empty production (with the original
token stream). Thusiore-digits begins this way:

(long version ofiore-digits)=

Using our representation scheme for computations, this
means thatiatural should return a value of type

Producer(Int) = Tokens — (Int + ErrMsg) x Tokens (define more-digits
(lambda ()
Now let's assume the existence of a nullary procedure (lambda (ts1)
digit, which returns a character producer that gets a nu- (sum-case ((list producer formore-digits) ts1)
meric character from the token stream. It fails (i.e., nesur ((ds ts2) (inl ds ts2))
an error message) if the next available character is notia dig ((msg ts2) ({empty-list producer ts1))))))
or if no characters are available. Since a natural number be-| et's write the producer for the empty production first. It
gins with at least one digit, we get: represents a constant-valued computation, similar toriee o
(integer producer fohatural)= that returns the number atural:
(1ambda (ts1) (empty-list producer=
(sum-case ((digit) tsl) (lambda (ts)
((d ts2) ({integer producer, given first digitts2)) Ginl ’ O ts))

((msg ts2) (inr msg ts2))))

The values returned byigit are of the sum type, so we
must usesum-case to determine whetheigit failed

or not. If so, thennatural itself must also fail, return-
ing the bottom value and the new tokens2. (Failures
get to eat tokens, too.) The rest of the number comes from
more-digits—to be defined shortly—which instantiates a

Most of the remaining code is identical to the body of
natural, as it should be, considering that the grammar pro-
duction is identical. The difference is in the return type:
(list producer formore-digits)=
(lambda (ts1)
(sum-case ((digit) tsl)

list-producing computation, giving us a list of all the dgi (E(zlzﬁia (ts1)
(numeric characters) it can extract from the front of the to- (sun-case ((more-digits) ts1)
ken stream. The portion that reads the remaining digits, the ((ds ts2)
looks much like what we already have: ((list producer, given all digits ts2))
(integer producer, given first digie ((msg ts2) (inr msg ts2))))
(lambda (ts1) ts2))
(sum-case ((more-digits) tsl) ((msg ts2) (inr msg ts2))))
((ds ts2) ((integer producer, given all digijsts2)) Of course, one would usuallg-reduce the innelambda
((msg ts2) (inr msg ts2)))) application, but we leave it in for consistency.

Finally, we have to return the answer. For this, we need an The code that returns the final value is like the corre-
integer producer that represents a constant value (modulosponding code imatural, except that it does not convert
free variables), an especially simple sort of computation: the list of characters into a number:

2|t may seem unnatural (no pun intended) to defineural as a nullary (list producer, given all digits=
procedure instead of a value, but it will later take addiiicarguments and (1a1f1bda (ts)
possibly become a macro. (inl (cons d ds) ts))

29

This completes the code for parsing natural numbers, asof the Kleisli triple is notbind; it is extend, defined in
written by following the types rather blindly. Section 3.1. We fincextend to be more convenient for
mathematical manipulation amdnd to be more convenient
for monadic programming.) A Kleisli triple is equivalentdo
There were two distinct patterns in the codefatural and monad; in fact, many authors drop the distinction altogethe
more-digits. One represents simple computations, like re- Also, not all definitions forProducer, return, andbind
turning the empty list, the list of digits, or the integerwal form a Kleisli triple. The necessary properties are spelled

2.2 Becoming More Abstract

of such a list. In each case, the code looked like this: out in detail in Section 3.
(producer pattern for returning an answee Using the monad operations, we can rewtit&ural to
(lambda (ts) be muchmore concise and readable:
(inl (answej ts)) (definition ofnatural)=
The other pattern was more complicated. It consisted of (define natural
. . (lambda ()
1. invoking another producer, (bind (4 (digit))
2. receiving its return values (the result or error messade a (bind (ds (more-digits))
the new token stream), (return (string->number
3. checking for failure, and (1ist->string
. (cons d ds))))))))
4. either

The syntactic abstraction technique we just used appears
(a) sending the new token stream to a second producer, Oepeatedly in the following sections: find a syntactic patte
(b) propagating the failure, skipping the second producer. abstract it with a macro definition, and rewrite the original
code more concisely using the macro definition.

One way to think about programming witteturn and
bind is that the Producer types form a family of abstract
(lambda (ts1) data types, andeturn apdbind are the public operations.

(sun-case ((producer #} ts1) that construct and combine producers. Whgn we have a sim-

(((var) ts2) ({producer#2 ts2)) ple (non-producer) value and we want to instantiate a rep-

((msg ts2) (inr msg ts2)))) resentation of a computation that produces that value, we
pusereturn. When we have representations for two com-
putations and we want to sequence them, wehisel to
construct a representation for the computation that fetweals t
(esult of the first into the second.

Abstracting over such code in the preceding section, the
pattern looks like this:

(producer pattern for sequencing two produgers

These two patterns correspond to the two operations used i
monadic programmingzeturn (also calledunit) andbind
(also calledmonadic le}y. As promised, we make coding
patterns concrete by defining them as macros. Procedura
definitions would be more conventional, but these macro 5 3 Monadic Combinators
definitions change in Section 4 to perform code rewrites that
could not be accomplished with procedural abstractions.
Now return implements the simple answer-returning
pattern:
(implementation of theeturn pattern=
(define-syntax return

We can writemore-digits in a monadic style, but the
patterns abstracted leturn andbind do not completely
absorb the code more-digits. The part that checks to see
if the first alternative failed, and if so proceeds to the sei¢o
does not fit either pattern.

(syntax-rules () (unsatisfactory definition afore-digits)=
((return ?answer) (define more-digits
(lambda (ts) (lambda ()
(inl ?answer ts))))) (lambda (ts1) ' o
andbind implements the producer-sequencing pattern: (sum-case ((btzinéd (C(l:l%;zii_ digits))
(implementation of thb-ind pattern= (return (coms d ds))))
(define-syntax bind ts1)
(syntax-rules () ((ds ts2) (inl ds ts2))
((bind (?var)?Producerl) ((msg ts2) ((return ’()) ts1))))))
?producer2

(lambda (tsi) While the code that implements alternate productions in a

(sun-case (?producer! tsi) grammar does not fit the pattern of one of the core monad

((7var ts2) (?producer2 ts2)) operations, it is clearly a pattern that will appear any time

((msg ts2) (inr msg ts2))))))) we need to check for the failure of one computation and

The type constructoProducer, together withreturn and perform another ingtead. A_bstracting over the patternsgive
bind, form aKleisli triple [11]. (Actually, the third element ~ USorelse, amonadic combinator

30

(unsatisfactory definition afrelse)= performing a vector reference on it, just because we happen

(define-syntax orelse to know that the stack is represented as a vector. While our
(syntax-rules () current representations for computations are, in factero
((orelse 7producerl ?producer2) dures that expect token streams, it is wrong for arbitradeco

(lambda (ts1)
(sum-case (7producerl tsi)
((ds ts2) (inl ds ts2))
((msg ts2) (7producer2 ts1)))))))

If we rewritemore-digits one more time, usingrelse,

to assume such a representation. Instead, programmers need
some explicit means of reifying computations as values of
Producer types in order to pass their own token streams (or
whatever is appropriate to the specified representati@slyp

to them and examine the results.

we get: Second, in botlkrelse anddigit we cobbled together
(definition ofmore-digits)= arbitrary code—which happened to be of the proper type to
(define more-digits generateProducer values—and we expected to be allowed
(lambda O to treat those values as valid representations of computa-

(orelse (bind (d (digit)) tions. This violation of the abstraction boundary is simila
(bind (ds (more-digits))

to constructing our own vector to represent a stack and pass-
(return (cons d ds)))) S . .

(return * O)))) ing it to a procedure that expects a stack. This, too, is wrong
We did it because we needed to have access to the current
token stream in the computation, but instead we need some
explicit means of constructing a representation of a compu-
tation and reflecting it into the system so that it is accepted
as something that has access to the threaded values.

The usual way to avoid violating the monad abstraction
boundary is to move the offending operations—likee1se
anddigit—inside the boundary and treat them as funda-
mental monadic operators, having nearly the same status as
return andbind. The weakness of such a solution is that it
is often necessary to create operators dikgit while writ-

The definitions of botmatural andmore-digits now
correspond very directly to the grammar for natural num-
bers. Furthermore, neither procedure deals explicityhwit
producer types except throughturn andbind.

We have, until now, simply assumed the existence of
digit. Let's write it now. A call todigit creates a char-
acter producer that examines the first character in the token
stream. If that character is numeric, it returns the charact
“removing” it from the token stream. Otherwise, the compu-
tation fails and leaves the token stream unchanged:

{unsatisfactory definition afigit)= ing a parser, not while creating a parser monad. A better so-
(d‘zim:ddl%;t lution is to create a small abstract data type for the monad
am a

and its most basic operators and to provide an interface for
users of the monad to access the underlying representdtion o
(not (char-numeric? (car ts)))) the monad (or at least a constructed view of it) in a limited
(inr "not a digit" ts) way.
(inl (car ts) (cdr ts)))))) Monadic reflection, as introduced by Moggi [14] (though
he does not use the phrase “monadic reflection”) and am-
plified by Filinski [5], provides a means of crossing the
monadic abstraction boundary with mathematically founded
operators. Neither of these authors actually extends e id
of monadic reflection into the space of exposing and hiding
representations in the sense of “reflective interpretens!’ a
the like. Such an extension is new in this work, but related
to the discussions by Chen and Hudak of monadic abstract
data types [2].

(lambda (ts)
(if (or (null? ts)

(We represent our token streams in this article as lists of
characters for simplicity.) Again, neitheeturn nor bind
helps simplify or clarify this code, becausggit must
access the token stream, which is not visible in procedures
like natural that are written only in terms of the monadic
operations.

3. Monads as Abstract Data Types

When we first introduced thBroducer type constructor, we
presented it as an abstract means of representing computa3.1 Foundations

tions by values. When we defined theturn andbind op- A monad consists of four things [12]:
erations, we provided a uniform interface to the abstractio
Ideally, all the other definitions would inhabit a space wlgs
this abstraction boundary, even combinators tikelse. In

1. a type constructorT’, for lifting a type « to a type that
represents computations that produce values of &ype

the preceding section, though, we broke @ducer ab- 2. a higher-order, polymorphic function (theapping func-

straction in two ways. tion of the monad) for lifting functions so that they take
First, inorelse, we took the results of producer expres- and returnT types,

sions (constructed witheturn andbind, presumably) and

applied them to token streams. This violation of the abstrac (a— B) =5 (T(a) = T(B))

tion boundary is similar to taking a stack (a classic ADT) and

31

3. a polymorphic function (called thenit of the monad) for

lifting a value of typea to the corresponding value of
type T'(«),

unitey

T()
and

4. a polymorphic function (called thmultiplication of the
monad) for “un-lifting” a doubly-lifted value of type
T(T(«)) to the corresponding value of tyi&(«).

T(T(a)) ™™= T ()

(In category theory, the first two elements of the monad are
combined into a functor.) The possibility of iterating tfie

(lambda (producer-producer)
(bind (producer producer-producer)
producer)))
The unit of the monad is actually the same thing-a@surn:
(indirect definition ofunit)=
(define unit
(lambda (a)
(return a)))
We see, then, that a monad can be defined completely in
terms of a Kleisli triple. The equivalence is bidirectional
we shall not demonstrate it here, but the Kleisli triple can b
defined in terms of the monad, too.

3.2 Monadic Reflection

type constructor creates a sequence of “levels.” The unit of If Kleisli triples and monads are equivalent, why would we

the monad shifts up a level (more nesting or wrapping), and
the multiplication shifts down (less nesting or wrappingy).
guarantee that all the level shifting is coherent, the magpi
function, unit, and multiplication must obey three equasio

mult, o map(unit,) idp(a)

multy o unity(q) id7(a)

multe, o multy(q)

mult, o map(mult,)

A Kleisli triple for the monad consists of the type con-
structor, the unit (that is;eturn), and anextensioropera-
tion:

extendy 3

(@ — T(B)) (T(e) = T(B))

Thebind form is simply a convenient notation for the com-
mon usage pattern efrtend:

((extend (lambda (v) N)) M) = (bind (v M) N)
While it is possible to define the mapping function and
multiplication of each monad directly, it is also possible
to define both in terms of theeturn andbind. Only the
indirect forms of the definitions follow.

For the Producer type constructor we are using in our
parsing examples, the mapping function—when applied to
some procedurg—returns a procedure that takes a producer
for one type and returns a producer for another. It dsts
get a value of the second type.

(indirect definition ofproducer-map)=

(define producer-map

(lambda (f)
(lambda (producer)
(bind (a producer)
(return (f a))))))

The multiplication of the monad takes a value that represent
a producer-producing computation. In other words, when

it is applied to a token stream, it either fails or returns a an

producer and a new token stream. We can hised for a
very concise definition, and writea1t this way:

(indirect definition ofmult)=
(define mult

32

choose one over the other? As was evident in Section 2.2,
Kleisli triples are excellent tools for monadic-style pram-
ming. That is to say, they provide an appropriate means of
abstractly manipulating the values that we use to represent
computations.

The unit and multiplication of a monad, on the other hand,
succeed in just the place where Kleisli triples failed. They
provide the appropriate means for crossing the monadic ab-
straction boundary via level-shifting. In other words, the
unit andmult are excellent tools fomonadic reflection

In order to talk about “clean” reflective level crossings, it
is necessary to have some notioropiiqueandtransparent
types. A simple mathematical understanding of the defini-
tion of Producer

Producer(a)) = Tokens — (a4 ErrMsg) x Tokens

treats the two sides of the equation as synonyms. From a
software engineering perspective, however, there is afsign
icant difference between the type constructor being defined
and the body of its definition. To exploit this differencet, le

us rewrite the types afnit andmult, treating the outermost
level as opaque and the inner levels as transparent whenever
there are nested applications of the type constructor. They
become

unitp(a)

P(a) P(T(a))

and y
P(T(a)) ™™ P(a)

where P represents an opaque version Bf Using these
types, the outer “interface” of the type always remains
opaque. The types fateturn andextend (and thusbind)
refer only to the opaque version of the type constructor:

o returng P(Oé)

(a = P(3) 2 (P(a) — P(B))
It might seem that these operations allow no means of
“reaching through” the opaque type to do anything inter-
esting with the transparent version, but in fact, they pevi

plenty of power when the operations are used in conjunction p1 andp2 in place of the producers to whiclrelse was

with each other.

Let us return to our unsatisfactory definitionsdifgit
and orelse to see how judicious use afnit andmult
create clean and explicit abstraction-boundary crossivgs
begin withdigit, where we want to construct a representa-
tion for a non-standard computation (i.e., one that canaot b
constructed byeturn or bind). Furthermore, we want our

applied. Explicitly applyingp1 andp2 to token streams is
a valid thing to do, becausenit yields transparent values
wrapped in an opague coating, ahiind strips away the

coating.

3.3 Abstracter and Abstracter
Just asreturn andbind are syntactic abstractions of the

hand-constructed procedure to be accepted as a valid digitoatterns for simple construction and sequencing of praduce
(numeric character) producer. Here is the code that we wantvalues, we can formulate patterns that abstract the common

to act as a digit producer; it is taken straight from the old
definition ofdigit:
(custom digit produce=

(lambda (ts)

(if (or (null? ts)
(not (char-numeric? (car ts))))
(inr "not a digit" ts)
(inl (car ts) (cdr ts))))

Just as we do fot2 or (car > (1 2 3)), we usereturn
to construct a computation that produces this value:
(digit-producer producer=

(return (custom digit producen
Finally, we usenult to “shift down a level.” That ispult
will turn the digit-producer producer into a plain digit pro
ducer, explicitly coercing our hand-constructed value it
valid instance of the abstract data type.
(definition ofdigit, usingmult)=

(define digit

(lambda ()
(mult (digit-producer producer))

Although orelse is longer and more complicated, the
same kind of techniques work for rewriting it in a more
satisfactory style. This time, we use bathit andmult,
becauseorelse needs to shift up (lift the representation
of the underlying computation into a value the user can
manipulate) as well as down. We begin by lifting both of
the incoming producers:

(definition oforelse, usingunit andmult)=

(define-syntax orelse

(syntax-rules ()
((orelse 7producerl ?producer?2)
(bind (p1 (unit ?producerl))
(bind (p2 (unit ?producer2))
(producer that performs alternation))))

As in digit, we need a producer that cannot be written
usingreturn andbind, SO we construct one by hand and
usemult to reflect it into the system:
(producer that performs alternatioes
(mult (return (lambda (ts1)
(sum-case (pl tsl)
((ds ts2) (inl ds ts2))
((msg ts2) (p2 ts1))))))

The difference between this code and what appeared in the

body of the original version ofrelse is that we have used

33

usage ofunit andmult. We assert that, if we were to go
out and write hundreds of procedures usiagt andmult,
we would see the same patterns over and over: the ones used
in digit andorelse. The pattern for usingnit looks like
this:
(producer pattern for reifying a producge

(bind ((var) (unit (producer#}))

(producer #2)

And whenever we useult, we applyreturn to alambda
expression:
(producer pattern for reflecting a constructed producer

(mult (return (lambda ((var))

(expressioh)))

The effect of these compositions is even more evident when
the constituent operations are written as arrows. Assume
that (producer #) has opaque typ€(«) but (producer #2
treats(var) as the transparerif’(«/), returning a value of
opaque typeP (). In terms ofextend, this means that the
body is like a function

T(a) = P(5)
and the whole reification composition is:

() Unitp(q)

Pla

eztendT(a)ﬁ(g)
I St AN

P(T(a)) P(B)

The reflection composition yields a simple conversion from
transparent to opaque types:

TEUTTT (o)

T () P(T(a)) ™2, P(a)

As is our wont, we turn these patterns into macros. The first
we callreify:
(definition ofreify)=
(define-syntax reify
(syntax-rules ()
((reify (?var 7producerl)
?producer?2)
(bind (?var (unit ?producerl))
7producer2))))

The second we calleflect:

(definition ofreflect)=
(define-syntax reflect
(syntax-rules ()
((reflect (?7var) 7expression)
(mult
(return (lambda (?var) ?expression))))))

Effectively, reflect exposes the threaded token stream to
the expression in its body.
We can now useeflect to simplify digit one more
time:
(definition ofdigit)=
(define digit
(lambda ()
(reflect (ts)
(if (or (null? ts)
(not (char-numeric? (car ts))))
(inr "not a digit" ts)
(inl (car ts) (cdr ts))))))

Usingreflect andreify together, we get a new definition
of orelse:

(definition oforelse)=
(define-syntax orelse
(syntax-rules ()
((orelse 7producerl ?producer2)
(reify (pl 7producerl)
(reify (p2 ?producer2)
(reflect (tsl)
(sum-case (pl ts1)
((ds ts2) (inl ds ts2))
((msg ts2) (p2 ts1))))))))

These are our final definitions dfigit andorelse. They
are now completely explicit in their crossings of abstratti

(program — D ... (run M FE)
D — (define V) R)
R — (lambda+ (V' ...) M)
M — (return E)
| (bind (V M) M)
| (reflect (V) E)
| (reify (V M) M)
| (Vm E..)
| derived monadic expression
E — arbitrary Scheme expression

By “derived monadic expression,” we mean user-defined
syntactic forms—Ilikeorelse—that expand into monadic
expressions. By “arbitrary Scheme expression,” we mean
code that doerot contain monadic subexpressions.

The relationships amongeturn, bind, reflect, and
reify might be better understood by examining typing rules
for them. The rules in Figure 1, for the sake of brevity, ab-
breviateProducer asP. No rules are given for arbitrary ex-
pressiondr. Instead, these four rules are meant to augment
the typing rules for standard expressions.

There are two additional forms introduced in this gram-
mar: run andlambda+. Without lambda+, there would be
no “roots” for the portion of the grammar that deals with
monadic expressions, nowhere to get started with monadic

boundaries. Also, the representation of computations-is re programming. For now, we letambda+ be synonymous
markably abstract. We need know only that producers canwith lambda. To conform to this grammad;igit, natural,
be applied to token streams and that they return a sum valueandmore-digits should be modified to uskambda+.

and a new token stream. We never disebda to construct
producers directly.

3.4 A Grammar for Monadic Programming
When we decried the original code féigit andorelse,

we were appealing to what we hoped was a shared implicit

intuition, which we now make explicit. What is it that makes
us uncomfortable with the following code?
(bad code=

(bind (x (natural))

(lambda (ts)
(inl (+ x 2) (cdr ts))))

What bothers us is that we expect the body of tied
expression to be anothéind or a return, or maybe a
reify or areflect, but certainly not dambda. In other
words, programs written in a “monadic style” are really
written in a particular sublanguage in which only certain
forms are allowable.

We make the language of monadic programming explicit

Therun form simply starts a computation by passing the
initial token stream (or other store-like value) to a proetiuc
(definition ofrun)=

(define-syntax run

(syntax-rules ()
((run ?producer 7exp)
(?producer 7exp))))

For example, this use afun:
(run (natural) (string->list "123abc"))

would run our natural-number parsing program and return
123 (left-injected) and the remaining charactéts\a #\b
#\c).

4. Optimizing Monadic Programs

With both the parsing operators likdgit and the simple
client code likenatural written in terms ofreturn, bind,
reflect, andreify, the inner abstraction boundary around
the monad is satisfyingly small. The performance, though,

by presenting a grammar for it. This grammar requires both is inadequate for use in a real compiler or interpreter. The

the right-hand side and the bodyefnd expressions to be
other monadic expressions, and so on.

34

largest source of overhead expense is all the closure areati
which a compiler may or may not eliminate. To provide a
stronger guarantee than “we hope the compiler cleans this
up for us,” it is possible to create new closure-free version
of the macros for the core operators.

I'HE:7

(return) 'k (returnE) : P(7)
(bind) '+ M, : P(m) Dyvim B My : P(mo)

" T (bind (v M) Ma) : P(r)

, ' M : P(m) Tv:(S — (1 + ErrMsg) x S)F My : P(12)
(reify) . :

Tt (reify (v M) Ms) : P(12)
Tv:SHE: ErrM

(reflect) ,0:8 (1 4+ ErrMsg) x S

't (reflect (v) E) : P(7)

Figure 1. Typing Rules

Let’s look at the expansion of a small part of our natural monadic-programming macros so the token stream is passed

number parser, the first of the alternativeadire-digits: as an extra argument to the existing procedures.
(more-digits fragmenj= Thelambda+ form, which we introduced in the preceding
(bind (ds (more-digits)) section, is the starting point for the extra arguments:
(return (cons d ds))) (improved definition of ambda+)=
Using the most recent versions bind and return, this (define-syntax lambda+
code expands into: (syntax-rules ()
((lambda+ (?formal ...) 7body)

(more-digits-fragment expansigre
(lambda (ts1)
(sum-case ((more-digits) tsl)

(lambda (?formal ... ts)
(body of token-accepting functipr))

((ds ts2) ((lambda (ts) We now need to thread the token-stream argument appropri-
(inl (cons d ds) ts)) ately into the body. Since we know that this body must be
ts2)) a monadic expression, we need only change the implemen-
((msg ts2) (inr msg ts2)))) tation of those forms consistently with the new “un-curtied
In the expansion, every subexpression that denotes a prolambda+ form.
ducer value, be it a call likémore-digits) or alambda The simplest case is if the body is an application of a

expression, is applied to a token stream. This property will user-defined procedure, such as a cadligit. In this case,
hold in all such programs, as itis guaranteed by our gram- we need to make sure to thread our store through as the last

mar. argument to the call. We accomplish this with the helper
formwith-args:

(definition ofwith-args)=

According to the implementation from the preceding sec- (define-syntax with-args

4.1 Eliminating the Closures

tions, every producer expression will construct a closure, (syntax-rules ()

either directly (by expanding into aambda expression) ((with-args (7extra-arg ...)

or indirectly (by invoking a procedure that returns a clo- (Poperator 7arg ...))

sure). These closures are then immediately applied to to- (Toperator 7arg ... Textra-arg ...))))

ken streams. Of course, the direct expansion intabda It may seem thatith-args is more general than necessary,

and immediate application (as in the preceding example) since it can handle multiple extra arguments, but this gener
becomeslet in nearly every Scheme implementation, but ality offers us a great deal of leverage, as we shall see later
the sites where closures are returned by procedure calls ardJsingwith-args, we can finish the definition dfambda+
much harder for a compiler to optimize. One way to im- like this:

prove both the memory and space use of the code is to re-(body of token-accepting functips

move the need for the two-stage application. Since, in the (with-args (ts) 7body)

expansion, the token stream is always available to finish off This code is well-formed only if the body is in the form
the application, we never need to partially apply procesiure of an operator and some arguments. If we look back at the
like digit. Instead, we can modify the definitions of our grammar, we see that this is indeed the case.

35

The definitions ofbind and return must now handle
extra input in their patterns. bind, these extra arguments
must be threaded into the subforms:

(improved definition obind)=

(define-syntax bind

(syntax-rules ()

((bind (?var ?rhs) 7body ?7ts ...)

(sum-case (with-args (7ts ...) 7?rhs)
((?var 7ts ...)
(with-args (7ts ...) 7body))

((msg ?7ts ...) (inr msg 7ts ...))))))

is the same as applying the correspondiagbda expres-
sion. In other words, under our new protocoéflect ex-
pands into det.
(improved definition ofeflect)=
(define-syntax reflect
(syntax-rules ()
((reflect (?var
(let ((?var ?7ts) ...
7expression))))
We have carried the potential for threading multiple values
throughreflect, just as we did fowith-args. This gen-

)

...) Texpression 7ts ..

)

The token-stream parameter(s) used in the right-hand sideeralizes the version afeflect in the preceding sections.
are the same ones (i.e., the same names as those) bound hgf course, thelet we just introduced merely renames the

let-values in the body. We need not worry about shadow-
ing, though, since the token stream is necessarily threaded
and there can be no free references to it in the body.

In return, the extra arguments need to be threaded back
out, along with the desired return value.

(improved definition ofeturn)=
(define-syntax return
(syntax-rules ()
((return 7answer ?7ts ...)
(inl ?7answer 7ts ...))))
Thus,return becomes an alias fdm1, as it should be.

Since we no longer run a computation by first evaluating
it and then passing the result a token stream, we must modify
run to follow the new protocol:

(improved definition ofun)=
(define-syntax run
(syntax-rules ()
((run ?producer 7exp ...)
(with-args (7exp ...) 7producer))))

The new version converts the initial stream(s) into argu-

ment(s) to the producer. The grammar in the preceding sec-

tion supported only a single “hidden” argument. In order for
it to support the generality that is included in the new ver-
sions of these operators, it should be modified to allow ad-
ditional arguments teun. The same sort of modification is
necessary in the grammar rule fegflect. It should allow
additional variables to be bound to the current values of the
additional store-like parameters.

Thereflect andreify forms require a bit more anal-
ysis before they can be optimized. We begin wittflect.
There are two ways to proceed here. One is to recognize
that while the added syntax we have imposed wililect
is good for software engineering, theflect form is still
mathematically equivalent to what we started with: a diyect
constructedlambda expression for a producer. (This math-
ematical equivalence, which comes from the monad equa-
tions, is a good thing. It validates our sequence of abstrac-
tions and transformations.) The other approach is simply to
begin with the macro definition fareflect and follow all
the definitions ang-reductions, eventually concluding that
reflect is merely an alias foLambda. Either way, the re-
sultis the same. Applyingeeflect form to a token stream

36

token-stream parameter(s).
More mechanism is required to implemerdify well.
If we continue to reify computations as values, using the
threaded functional representations, we must pay for first-
class procedures:
(improved definition ofeify, first try)=
(define-syntax reify
(syntax-rules ()
((reify (7var ?rhs) 7body 7ts ..
(let ((?var (lambda (7ts ...)
(with-args (7ts ...) 7?rhs))))
(with-args (?ts ...) ?body)))))
While this works, it creates the first-class procedures we
were trying to avoid. The point afeify is to allow the code
in the body to poke at the reified producer by passing it token
streams and examining the results explicitly. We can suppor
this functionality without forming a closure by construngi
the expansion-time equivalent of a locally-applicable- clo
sure: a local macro. We bind (at compile time) the variable
to a syntax transformer that generates the right code:
(improved definition ofeify)=
(define-syntax reify
(syntax-rules ()
((reify (?var 7rhs) ?body 7ts ..
(let-syntax
((?var (syntax-rules ()
((?var ?ts ...)
(with-args (7ts ...) ?rhs)))))
(with-args (7ts ...) 7body)))))
This new definition has a certain constraint that was not
present in the procedural version: the bound variable must
appear in theebody only in operator position. This is due,
in part, to the inability to do macro-like replacement of
plain identifiers in Scheme’s standardized syntactic exten
sion mechanism$put the restriction boosts efficiency any-
way. It prevents us from leaking unwanted computational ef-
fort into the runtime.
The new definition ofreify is backed by a mathemat-
ical equivalence, too. The original definition péify was
mathematically equivalent (again by the monad equati@ns) t

)

)

3Some implementations, such as Chez Scheme [3], do supjstitsition
for all identifiers in the scope of the macro binding.

substituting the right-hand side for the variable in theyood be truly exceptional, and the continuation-based altarmat
Our new definition does just this. could eliminate a significant amount of overhead.

4.2 The Closure-Free Expansion 5. Conclusions

Using the new definitions foreturn, bind, etc., we get
wonderfully improved expansions for monadic programs.
For instance, the fragment of code at the beginning of this
section, which used to contain five different closure-dosat
sites, now expands into the following:

The example in this paper has been exclusively about pars-
ing, but the results extend across a much broader scope: any
composition of store-like monads, possibly composed with
an error or lifting monad. The macros in the preceding sec-
tion are defined in such a way that it is easy to support the
(more-digits-fragment expansion, improvst threading of multiple store-like parameters through compu
(sum-case (more-digits ts) tations. In fact, the only form that must be changed to add
((ds ts) (inl (cons d ds) ts)) a parameter idambda+. For example, if we want to thread

((msg ts) (inr msg ts))) three stores through the computation, we rewri@bda+
The new code creates no closures at all. The lack of rampantthis way:

anonymous procedures also makes the new code much MOMByefinition ofLambda+ with 3 stores=

amenable to compiler optimizations. For example, if all the (4efine-syntax lambda+

code for parsing is put in a single mutually recursive block (syntax-rules ()
(i.e., a singleletrec), we would expect a good compiler to ((lambda+ (?formal ...) ?body)
turn all the calls into direct calls to known code addresses. (lambda (?formal ... sl s2 s3)

(with-args (s1 s2 s3) 7body)))))

The use ofwith-args in all the other forms will drive
The representation we have used for sum-type values re-them to expand in ways that propagate the store parameters
quires a dispatch at every return site (see the appendix).correctly. With our current definitions, any user-level eod
There are two useful alternatives to this approach. that useseflect must be rewritten to accept the extra store
One alternative is Slmply to return no value for failure, parameters, and any code that usesfy must app]y the
and one value for success. This is no faster in the abstracteified values to additional arguments. One way that this
than returning a boolean value, since there remains a diS'Work could be extended is to imp|ement a mechanism by
patch at every return site, but some implementations of which user-level code would be able to refer to only those
Scheme provide especially fast ways to dispatch on argu-“hidden” parameters that they need to see at any point. This
ment count [4]. Thus, while this technique does not decreasejs possible with more sophisticated macros.
the number of steps, it may decrease the absolute running At the end of Section 4.3 we alluded to the possibility
time of the program. of preprocessing the grammar and/or parser to boost its
The second alternative is the only one that really elimi- performance. Another possible direction we see for researc
nates the return-site dispatch. One provable property 0f ou in this area is to combine the “fast LR parsing via partial
monad definition is that, in the absence of reification, fau evaluation” techniques of Sperber and Thiemann [17] with
are propagated up through the entire extent of the computa-our expansion-time optimizations. The primary goal of most
tion. In other words, it is only in operators likerelse that functional parsing research is to make parsers easier for
failures may be caught and acted upon. We could capture apeopleto write, but the same results should simplify the
continuation at each such dispatch point and pass it downwork of parser generators.
into the subcomputations. When we want to signal a failure Even if our goal had been to compile monadic programs
(asindigit), we invoke the most recently captured continu- directly into a lower-level language, the more rigorougesty
ation. This is close in both spirit and theory to the direigtes afforded by explicit monadic reflection would make the
monadic programming of Filinski [5]. In this implementa- compilation process more tractable. For example, a typi-
tion, no checks have to be made at each normal return point,cal parser written in Haskell or Scheme will be much easier
but the overhead for continuation creation may outweigh thi to convert to C without arbitrary anonymous functions in the

savings. (Actually, this technique does not require full-co yser code, which the user expects to be treated as represen-
tinuations; it needs only escapes, which may be implementedtations of computations.

4.3 Alternative Sum-Type Representations

more cheaply than full first-class continuations.) The measurable performance benefit from the optimized
Naively implemented parsing routines, like the one we (store-threaded) macros varies depending on the Scheme
wrote for natural numbers, will make heavy useopélse. implementation. One production-grade parser that uses the

Thus, depending on the expense of the second alternative, itnacros from this article is used to parse a kind of annotated
may not be worthwhile. On the other hand, if a grammar is table-definition language for databases. The parser is spli
made very deterministic through the use of pre-calculation into modules that do lexical analysis and phrasal analysis,
(of “first” and “follow” sets, for example), then failures ma with the output of the first serving as the token stream for

37

the second. One of the regular inputs to this parser contains [4] R. Kent Dybvig and Robert Hieb. A new approach
about 150 tables, at a total file length of about 3000 lines. to procedures with variable arity.Lisp and Symbolic
Running on Chez Scheme [3], the total time to parse the Computation3(3):229-244, 1990.
input and construct the parse tree is less than 2 tenths of a [5] Andrzej Filinski. Representing monads. Gonference
second on typical personal computer hardware. There is no Record of POPL '94: 21st ACM SIGPLAN-SIGACT Sym-
measurable difference between the different versionseof th posium on Principles of Programming Languagpages
macros, implying that Chez Scheme is already eliminating 446-457, New York, January 1994. ACM Press.
all the overhead that might be introduced by closure creatio [6] Matthew Flatt. PLT MzScheme: Language manual.
even across procedure calls. Running on DrScheme [15, http://download.plt-scheme.org/doc/mzscheme/,
6], the total parse time on the same hardware is about 1.5 2005.
seconds. There is a 10% to 12% decrease in the parse time [7] Graham Hutton. Higher-order functions for parsidgurnal
using the improved macros from Section 4. of Functional Programming2(3):323-343, July 1992.
Thus, the benefits of following a grammar for monadic [8] Graham Hutton and Erik Meijer. Monadic parser combina-
programming—even for operators that depend somewhat "~ (o5 Technical Report NOTTCS-TR-96-4, Department of
on the monad’s representation—are two-fold: First, the pro Computer Science, University of Nottingham, 1996.
grams written |_n E.i §trlcter_monad|g style are more eleggnt, [9] Graham Hutton and Erik Meijer. Monadic parsing in Haskel
lessad hoc Whlle itis .possmle. tg write w.eII—typed monadic Journal of Functional Programming8(4):437—444, July
programs without using explicit reflection operators, they 1998.

violate abstractions in the same ways that ill-typed (but [10] Richard Kelsey, William Clinger, and Jonathan Rees

runnable) programs do in C when they cast a file pointer Revised report on the algorithmic language Scher€M
to be an integer and add 18 to it, just because some program- g ,gpL AN Notices33(9):26—76, September 1998.

mer happens to know that the result will be meaningful.
Second, the rigor that makes prografasl better can also
make thenrun better. While a sufficiently “smart” compiler
or partial evaluator might eliminate the closure overhestl j]))
as well as our rewritten operators, there is an element ef cer [12] Saunders Mac LaneCategories for the Working Mathemati-
tainty that comes from shifting the work even earlier than cian. Springer-Verlag, second edition, 1998.

compile time. By making sure that the optimization happens [13] Eugenio Moggi. An abstract view of programming lan-

at expansion time, we depend less on the the analysis phase ~ 9uages. Technical Report ECS-LFCS-90-113, Laboratory for

of a compiler and more on our own mathematics. Foundations of Computer Science, University of Edinburgh,
Edinburgh, Scotland, April 1989.

Acknowledgments [14] Eugenio Moggi. Notions of computation and monads.

. . Information and Computatiqr93(1):55-92, July 1991.
The authors appreciate the comments and recommendations putatiaid3(). _ y
provided by anonymous referees. Kevin Millikin was in- [15] PLT. PLT DrScheme: Programming environment manual.
volved in many discussions as the paper was initially writ- IZ’BB%‘/ /download.plt-scheme.org/doc/drschene/,
ten. Michael Sperber offered several valuable suggestions B _ _ _ _
including the recommendation that this work be shared in the [16] David A. Schmidt. Detecting global variables in denota
context of the Scheme Workshop. A special thanks goes to tional specifications.ACM Transactions on Programming
Mitch Wand for extensive comments, careful readings, and Languages and Syste/i7$2):299-310, April 1985.
pointed demands for a better treatment of the types of the [17] Michael Sperber and Peter Thiemann. The essence of LR

[11] Heinrich Kleisli. Every standard construction is irwha by
a pair of adjoint functors. IfProceedings of the American
Mathematical Societwolume 16, pages 544-546, 1965.

basic operators. parsing. InProceedings of the ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manip-
References ulation, pages 146-155, La Jolla, 1995. ACM Press.

[18] Philip Wadler. How to replace failure by a list of sucses.
In Second International Conference on Functional Program-
ming Languages and Computer Architectudancy, France,
September 1985. Springer-Verlag.

[1] Richard Bird.Introduction to Functional Programming Using
Haskell Prentice Hall Series in Computer Science. Prentice
Hall Europe, second edition, 1998.

[2] Chih-Ping Chen and Paul Hudak. Rolling your own mu-
table ADT: A connection between linear types and mon-
ads. InConference Record of POPL '97: The 24TH ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languagespages 54—66, Paris, France, January 1997.
ACM Press.

[3] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide
Cadence Research Systems, 2005.

[19] Philip Wadler. Comprehending monad$Jathematical
Structures in Computer Scienc(4):461-493, December
1992.

38

Appendix

As long as sum-type values never need to be stored in data
structures (and they do not, in this article), they can be
represented efficiently as “tagged” multiple values. The ta
is simply#t for left-injected values:
(tag-basedinl)=
(define-syntax inl
(syntax-rules ()
((inl 7arg ...)
(values #t 7arg ...))))
and#f for right-injected values:
(tag-basedinr)=
(define-syntax inr
(syntax-rules ()
((inr 7arg ...)
(values #f 7arg ...))))

For “casing” sum-type values, we use a new syntactic form
sum-case, as demonstrated in the following example:

(sum type examples
(define addl-or-zero
(lambda (thunk)
(sum-case (thunk)
((m) (+n 1))

((z) 0))))

(list (addl-or-zero (lambda () (inl 42)))
(addi-or-zero (lambda () (inr 0))))

The last expression evaluates to the (43 0).

Defining a macro fosum-case is relatively straightfor-
ward in a Scheme implementation that has a direct means
of generating temporary variables in macros. The portable
version of the macro is made much more complicated by the
need to generate a list of temporaries:

(portable tag-basedum-case)=
(define-syntax sum-case
(syntax-rules ()
((sum-case 7exp
((?left-var ...) 7left-result)
((?right-var ...) ?right-result))
(gen-var-list (?left-var ...)
(sum-case-help () 7exp
((?left-var ...) 7left-result)
((?right-var ...) 7right-result))))))

(define-syntax sum-case-help
(syntax-rules ()

((sum-case-help (7temp ...) Texp
((?left-var ...) 7left-result)
((?right-var ...) 7right-result))

(call-with-values (lambda () 7exp)
(lambda (tag 7temp ...)
(if tag
(let ((?left-var 7temp) ...)
?left-result)
(let ((?right-var 7temp) ...)
?right-result)))))))

39

(define-syntax gen-var-list

(syntax-rules (
((gen-var-lis

)
t O

(head (7y ...)

(?head (?7y

)T

7tail ...))
tail ...))

((gen-var-list (?v0 ?v ...)

(?head (?7y
(gen-var-lis

S

t (7v ..

(?head (7y ...

7tail ...))
)
temp) 7tail

SSIID))

40

An operational semantics for RRS Scheme

Jacob Matthews

University of Chicago
jacobm@cs.uchicago.edu

Abstract

This paper presents an operational semantics for the core o

Scheme. Our specification improves over the existiﬁ@lR de-
notational specification in four ways. First, it is more cdete,
since it containgval, quote, anddynamic-wind Second, it models
multiple values in a way that does not require changes tdabeck
parts of the language. Third, it provides a more faithful edoaf
Scheme’s undefined order of evaluation. Finally, it is exaiie,
because itis encoded as a program in PLT Redex, a domaiifispec
language for writing operational semantics. The execatapkc-
ification allows others to experiment with our specificatiamd
allows us to build a specification test suite, which improves
confidence that our system is a faithful model of Scheme.

In addition to contributing a specification of Scheme, traper
presents several novel modeling techniques for Felleisel-ktyle

rewriting semantics that we discovered while developing?ﬁRS
Scheme semantics. All are applicable to a wider range oflenab

Robert Bruce Findler

University of Chicago
robby@cs.uchicago.edu

suited for modeling programming languages with nondeteistic

fand nonconfluent behavior. We make important use of nondeter

minism in our model, as we will explain in section 2.

As a side benefit of using a small-step operational encodiag,
can use PLT Redex [17], a domain-specific language for contex
sensitive term-rewriting systems, to give a directly exable op-
erational encoding for our model. PLT Redex provides a gcagbh
browser for exploring reduction graphs and allows us to tadin
a large test suite of terms and their expected normal foratswb
can run whenever we change any reduction rules. This tdstigdi
creases our confidence that our model is a faithful reprasentof
Scheme.

While writing our model, we developed new techniques for
modeling some of Scheme’s features. In the rest of our paper w
first introduce those techniques in isolation to explain madels
for particular Scheme features, and then combine them isin-a
gle unified model. In section 2 we show how to use nondetesmini
to model Scheme’s unspecified application order; in seQiove

than the specific uses we have for them, and the fact that theyshowanovel technique for modeling multiple return valiesgc-

combine seamlessly in our fulldRS model shows that they scale
to real languages.

1. Introduction

The Revisetl Report on the Algorithmic Language Scheme [15],
R°RS, provides an informal, English specification of Schene an

tion 4 we give a model fogquote andevat and in section 5 we give
a model forcall/ccin the presence afynamic-windFinally in sec-
tion 6 we combine all those models along with several othetemo
straightforward featuresf, consand cons-cell mutation, variable-
arity proceduresapply, and an object-identity-sensitive notion of
eqv?equality.

We will assume the reader has a basic familiarity with caotex

a denotational model of a core Scheme language. The denota-sensitive reduction semantics. Readers unfamiliar withgyistem

tional specification is more precise than the informal sfeation,
but is also incomplete with respect to it. For instance, tirenfl
specification does not present the top-level mentionedutitrout
the informal specification, and is missing key procedure$ s
dynamic-windand eval whose inclusion could have a significant
impact on the formalism. While that is not necessarily a b
— the measure of a model is not its completeness but its kit
clearly and accurately explain its subject — Gasbichler'stre-
cent explanation of the difficulties involving dynamic cexis and
threads [12], for instance, demonstrate that the formalehigdn-
sufficient for some important questions.

In this paper we give a new treatment of theRS formal se-
mantics that models more of the language described in tbenaf
semantics section than the formal semantics section in BRSR
Scheme document does. Rather than extending the denatiaten
mantics with extra constructs, we present an alternatefaion
as a small-step operational semantics. We do this for twomeg-
sons. First, to make the semantics natively executableatipeal
semantics are much more amenable to direct execution tham de
tational semantics. Second, to allow for nondeterminisohrzom-
confluence: small-step operational semantics are paatigukell-

Permission to make digital or hard copies of all or part of thrk for personal or
classroom use is granted without fee provided that copresier made or distributed
for profit or commercial advantage and that copies bear titissand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Jacob Matthews and Robert Bruce Findler.

41

may wish to consult Felleisen and Flatt's monograph [5] oildr

and Felleisen [24] for a thorough introduction or our prexgevork

with Flatt and Felleisen [17] for a somewhat lighter one. \Wedd

also emphasize before we proceed that this semanticsesties

out many important Scheme features — among them the numeric
tower, the top-level environment, and macros — but that itlet®
more features than the Report's formal semantics does andris
suitable for extension.

2. Unspecified application order

In evaluating a procedure call, the’RS document deliberately
leaves unspecified the order in which arguments are evalluade
section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and
operand expressions is constrained to be consistent with
somesequential order of evaluation. The order of evalua-
tion may be chosen differently for each procedure call.

In the formal semantics section, the authors explain howriadel
this ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary
permutationgpermuteand unpermute . . to the arguments
in a call before and after they are evaluated. This is notejuit

p = (store((xVv)---)e) C = (v---Ce---)|(set!xC) | (beginCee---)|]]
e u= (ee--)|(set'xe | (beginee---)|v X = identifiers, store locations for mutable bindings
v == (lambda(x---)e)|n n = numbers
(store ((x1 v1) ---) C[((lambda (xz - --) €) vz ---)) — (store((x1 v1) - -+ (X5 V2) -+) Cle[Xy -+ / X2 -+]]) (MA PR
(#x2 = #v2, eachx), fresh)
(store ((x1 v1) - --) C[((lambda(xz ---) € va ---)]) — error: wrong number of arguments (M#RERR)
(#xo # #v2)
(store((x1 v1) -+~ (X V) (2 va2) - - -) C[(set!x V)]) — (store((x1 vi) - (x V) (x2 v2)- - -) C[0]) (MSET)
(store ((xg v1) - -+ (X V) (X2 v2) - - -) C[X]) — (store((x1 v1) -+ (xXV) (X2 v2) - - -) C[V]) (ML ooKuP)
(store((x V) - -) C[(beginv e e --)]) — (store((xV) - --) C[(begine; e ---)]) (MSEQ)
(store ((x V) - - -) C[(begine)]) — (store((xV) - --) C[€]) (MTRIVSEQ)
(store ((x V) - - -) C[(— h)]) — (store((xV) ---) C[-nl]) (MNEG)

Figure 1. Core Scheme with mutation

right since it suggests, incorrectly, that the order of exal
tion is constant throughout a program.. [section 7.2]

In this section we present an operational technique thaticep
the intended semantics more faithfully. We begin by conside
a core Scheme with arbitrary arity procedurest!, numbers, and
negation, but with a fixed left-to-right order of evaluatifor ap-
plications, as shown in figure 1. It is a minor variation oflBisken
and Hieb'sAs [6]. A program consists of a store that associates
variable names to values and an expression, where expressi®
built up of numbers, arbitrary-arity lambda terms and aggtions,
set!, andbeginexpressions, and a built-in negation operator. (A
gives the rule for application of a procedure to fully-eakd ar-
guments: make one fresh identifiérfor each formal paramete,
introduce a new binding in the store for ea¢hassociating it with
the corresponding argumewtin the application, and then rewrite
the application as the procedure’s body with each occuerefian
X; rewritten into the corresponding (in this figure as in all fig-
ures in this paper, we will use vertically-centered ellipse to
indicate any number of occurences, including zero, of tleequl-
ing element). MAPERR gives the rule for procedures applied to
the wrong number of arguments: rewrite the term in its etytite
an error message, which halts the program immediately lsecau
it abandons the application’s original context. EhiSrewrites to
the constant O but also replaces the value associated witithn
identifier in the store with the given replacement. (We cleotus
haveset! return the constant O in this semantics as a “quick and
dirty” unique value; in the examples that follow 0 never agmsan
any program term except as the result of assignment.pbRuP
replaces an identifier with its associated value in the sidren
that value becomes necessarg.(when it appears as a redex in an
evaluation context). M&Q drops the first subexpression irba-
gin when there are more expressions to evaluate, an&M3EQ
drops thebeginwhen there is only one expression to evaluate. The
last rule, MNEG, simply negates its argument (the notationindi-
cates the syntactic representation corresponding to thieemeti-
cal numbem).

The order of evaluation is determined by the grammar for-eval
uation contexts@). The first production of the grammar specifies
that evaluation of a sub-expression of an application oakes
place when all of the sub-expressions to its left are valaebdve
been reduced to values). If we replace that first productitimtivis
one:

Cu=(e---Cv--9)]...

the semantics would specify a right-to-left order instead.

Either of these choices results in a system with unique decom
position. That is, each term can only be splitinto an eviduaaton-
text and a reducible sub-expression in one way (unless futks

42

or an answer). Accordingly, there is at most one way to rednge
expression.

To model a language with unspecified order of operations in-
stead, we can use a reduction system with non-unique de@mpo
tion to model the choice. We might be tempted to use this diefini
of evaluation contexts:

Ci=(e---Ce--) ...

Since this definition allows the hole to appear in any subesgion
of an application, this simple program that negates 1, esgatand
then applies a trivial procedure to the results

((lambda (xy) y) (- 1) (- 2)

can be split into an evaluation context with eitherX) or (— 2) as
the reducible expression.

At first glance, this appears to be a faithful model Riiz:S
Scheme. It is not. Consider this application of teet! expressions
in a store bindingcto 1.

(store ((x 1)
((set!'x (— X))
(set!x (= x))))

In Scheme, this program should always reduce to the apiolicat

of zero to zero withx set tol in the store (and then get stuck).
According to RRS, no matter which of the application’s subterms
is reduced first, the result should be thats negated twice. If

we just modify evaluation contexts as above, however, wanall
other interleavings. The problem is that that definitionv@fleation
contexts would allow a different argument of the same apfibo

to take one step of computation every step of the way, which ma
produce an outcome that could not be reached by any sequentia
ordering.

We discovered this problem while experimenting with that re
duction system in PLT Redex. We encoded the erroneous lieduct
system in PLT Redex and automatically generated the remtucti
sequence for the above term, shown in figure 2. The first term is
shown on the left. The top-most and the bottom-most path®€or
spond to the two sequential orderings and result in the pistpee.

In the middle section, the two assignments are interleaesd|ting
in —1 being left in the store.

With that in mind, we can design a more sophisticated strat-
egy that captures unspecified evaluation order but onlyvallee-
quential orderings. Figure 3 shows the necessary revismosre
Scheme to supportEﬂRS-ster procedure applications (each re-
places the appropriate rule from figure 1 — the other ruleta t
figure are unchanged). The basic idea is to use non-detatiini
choice to pick a sub-expression to reduce only when we hava-no
ready committed to reducing some other subexpression.fiie\aec

(store ((x 1)) (store ((x -1)) R R
(store ((x 1)) (store ((x -1)) (store ((x -1))
(Csett x (- 1) > ((sett x -1) (0 > (0 (0
(set x (-) (setl x (-) (set! x (- x)) (sett x (- -1)) (setl x 1))
% (store ((x -1)) (store ((x -1))
((setl x (- 1) |—>> ((set! x -1)
(store ((x 1)) 0)) 0))
((sett x -1)
» (setl x (- 1) ﬂ %
(store ((x 1)) (store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x 1))
((setl x (- x)) ((sett x (- 1) ((sett x -1) (0 (0
(sett x (- X)) (sett x (- 1) -z (sett x -1)) o
» (store ((x 1)) x \ o0)
((sett x (- 1) \S ﬂ
(setl x -1)) (store ((x -1))
Y (0 (store ((x -1))
(st x (-) [P0
(sett x -1))
(SI((()re . ((x (1))) (store ((x 1)) (store ((x -1)) (store ((x -1)) (store ((x -1))
set x (- X —>> ((setl x (- x) [—> ((sett x (- x) o
(st x (- 1)) - o) —>> ((O)S)et! X (- 1) |1 ((O)S)et! x 1)

Figure 2. Interleavings possible with an erroneous unspecifiediegidn-order model

inert = Ve
C = (inert---C°inert---)|...
(store (- - -) C[(inert- - - e inert- - -)]) — (store(---) C[(inert- - - e° inert---)]) (UMARK)
(store(---) C[((lambda (x--)e)° v° --)]) — (store(--- (X' V) ---) C[e[X ---/x---]]) (UAPP
(#x = #v, eachx’ fresh)
(store (- - -) C[(—° l°)]) — (store(---) C[l-nl]) (UNEG)

Figure 3. Revisions to core Scheme to support unspecified applicatider

It will either will return eitherl or 2, depending on the order of
evaluation. This is the way we want it; the model’s nonconfaee
reflects the underspecification oPRS Scheme rather than a tech-
e’ andC® are just alternate typesettings ohdrk €) and (nark nical bug in our model. It does, however, always make pragres
C).) Marks identify chosen expressions: only marked exjoess e formalize this with the following theorem statement:

may be reduced, and only one reducible marked expression may
appear in any application at one time. Tihert production stands

for terms in which evaluation may not occue., unmarked ex-
pressions (those expressions we have not tried to evalegtand
marked values (those expressions we have already finisbed-re
ing). We add the UMRK reduction rule that marks an arbitrary
unmarked expression in an application on the conditioneakaty
other expression is inert, and we modify the MAand MNeG

that effect, we introduce the non-termimaért and the notion of a
marked expression, denoted with thesuperscript. (These marks
are not an extension to the general term-rewriting framkwer

THEOREM2.1. For any closed programp in the language of fig-
ure 3, eitherp — p’, wherep' is also closedp — e wheree is
some error indicator, op is of the form §tore ((x v) - -) v).

Proof is contained in the first author's master’s thesis.[16]

This technique has other uses besides giving semanticsifor u
specified application evaluation orders. In general, itssful for
rules rules to apply only to fully-marked applications, teing modeling any kind of delimited nondeterminism, where eatibn
the UAPPand UNEG rules. may proceed arbitrarily but only at certain points in a pemgr This

Figure 4 (also generated by PLT Redex) shows how our new is useful for modeling unspecified behaviors and for compiex-
system evaluates the term from figure 2. The initial term appe ~ deterministic features such as threads.
in the center on the left. That term is an application, so trst fi
reduction either marks the first sub-expression or the skckin
the first subexpression is marked, evaluation continuesdowthe
bottom of the figure, over to the right and back up to the mididle
the second is marked, evaluation proceeds up, over, anddauok
middle. In both paths there are a few other application esgioas
to evaluate, leading to smaller separations. Eventudllypfahe
terms join back together and the final result in the storg, ias
shown in the center on the right.

One should not take that example to mean that this language ha

3. Multiple return values

RORS Scheme provides a facility for expressions to evaluate to
multiple or no values rather than just a single value. Thegdare
valuesbuilds multiple values andall-with-valuesaccepts multiple
values. Unlike tuples in SML and Haskell, multiple values aot
themselves values. For example, this program

(define (f x) (values(+ x X) (x X X))

any kind of confluence property, however. Consider this mog Eg?}‘igt)e)(g XYY)
((lambda (choicg produces an error, since procedure application expects afats
((lambda (x y) choicg arguments to be a single value (and the resutft isftwo values).

(set!choice 3
(set! choice 2))
0)

Instead, the programmer must ws#l-with-valuesto catch multi-
ple values. It expects a thunk as its first argument, apgietiunk,
catches any number of values that thunk produces, and apipéim

43

(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x (- x) |[—>> ((sett x (- x) |—>> ((set x (- x)°
(setl x -1)°)) 0°)) 0°))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x (- x)) ((sett x (-° x)° ((sett x (- x°)) °
(sett x (-° 1°) °) 0°)) 0°))
(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1))
(sett x (- x) ((sett x (- X)) (el x (= x°)) ° ((sett x (- -1°)°
(setl x (= x°)) °) (setl x (- 1°)) °)) 0°)) 0°))
(store ((x 1)) (store ((x 1)) (store ((x -1))
((sett x (- x)) ((setl x (- x) ((sett x (- -1°)) °
(set! x (- x))°) (setl x (- x°)) °) 0°))
R 7 v}
(store ((x 1)) (store ((x -1))
((set!t x (- x) ((sett x 1)°
(st(c;re . ((x (1))) —3 (sett x (- X)) °) 0%)) \b (store ((x 1)
setl x X (0°
(setl x (- x)) [~ (store ((x 1)) (store ((x -1)) |—>7 0°))
((sett x (- x)° (0°
(sett x (- X)) (sett x 1)°))
s A A
(store ((x 1)) (store ((x 1)) (store ((x -1))
((sett x (- x)° ((sett x (- x°))° (0°
(sett x (- x)) (sett x (- x))) (sett x (=° -1°)) °))
(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x (-° x°)) ° ((sett x (- 1°) ° (0° (0°
(setl x (- X)) (setl x (- x))) (set! xé(-" x°)) °)) (setl x (- 1°)) °)
(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x (- 1°))° (0° (0°
(sett x (- X)) (sett x (-° X)) °) (set! x (- x°)) °))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x -1)° —> (0 —> (0°
(sett x (- X)) (setl x (- x)) (sett x (- X)) °)

Figure 4. Evaluation in the unspecified-application-order model

to its second argument. So, a programmer could sufiplsesults
to g like this:

(call-with-valueqlambda () (f 3)) g)

In addition, there is no difference betweealuesapplied to a single
argument and that argument by itself, gq\alues § (values 9) is
the same agy(6 9.

To model multiple values, PRS Scheme’s formal semantics
models continuations as functions from an arbitrary nunobeal-
ues to a final answer. The informal semantics says that “éxfoep
continuations created with troall-with-valuesprocedure, all con-
tinuations take exactly one value” [15, section 6.4]. Threrfal se-
mantics reflects this by checking the opposite property.vere
context that expects a single value, it uses a helper fumatingle
to ensure that only a single value appears. This indireatkchg
impacts the entire semantics: it requires every contipoét ac-
cept any number of arguments initially and requires a calirigle
at every point where a continuation would be restricted.

that accept multiple values and contexts that reject maltiplues

44

directly. Our strategy is distilled in figure 5. That figurentains

a pure core Scheme extended withlues and apply-values a
syntactic form that has as its operands an expression that mu
evaluate to a procedure and another expression that mayagval
to any number of values, and calls the procedure with thoksresa
as arguments. We usg@ply-valuesin this section rather thacall-
with-valueshecause the resulting model is clearer and laqibly-
valuesandcall-with-valuescan be defined simply in terms of each

other in RRS Scheme:

(define (call-with-values thunk)f
(apply-valuesf (thunk))

(define-syntax apply-values
(syntax-rules()
[(-f vs-exp)

(call-with-valueqlambda () vs-expi f)]))

Our model uses a modest addition to the standard reduction-

Our semantic model captures the difference between cantext semantics formalism. We extend the notation so that holgs ha
names (written as subscripts) but otherwise behave as wetham

e

(ee---) | x| v] (apply-valuese &

v z (lambda (x - - -) €) | values
C = [le|(v---Coe---)| (apply-valuesC, €) | (apply-valuesv C.)
Co u= []o|C
C. == [lcC
Co[((lambda(x--) e Vv--)]e — Colex---Iv--]] (VA PP
(#v = #x)
Co[((lambda(x---) e v--)]e — error: wrong humber of arguments (\W®ERR)
(#v # #x)
Co[(apply-valuesv; (valuesy --))]e — Col(viVva--)] (VA PPVALS)
Co[V]« — Co[(values V] (VPROMOTE)
Co[(values Y]o — GCol[V] (VDEMOTE)
Co[(values v -)], — error: expected a single value (VMMOTEERR)

W #1)

Figure 5. Pure core Scheme with multiple values

holes do. The context-matching syntax is now annotated with
names as well, restricting legal decompositions to thoseravthe
hole has the same name.

In figure 5 we use this feature to give three distinct names to
holes, indicated with subscripts], indicates a hole in which any
expression should reduce to an element,df].. indicates a hole
in which any expression should reduce talges v---), and|]»
indicates a hole in which either result is acceptable. Thezghree
parallel context nonterminals. The cont€t produces an element
of v, C, producesyalues v - -), andC might produce either.

Since each subexpression of an application is expectedto pr
duce a single value, the evaluation context inside an agijmic is
C,. For the same reason, the evaluation context for the firgbsub
pression obpply-valuesis C,. The evaluation context for the sec-
ond subexpression, however(s because it is expected to produce
multiple values.

Since procedure applications (defined by theP#and VAPP-
ERR reductions) andapply-values uses (defined by the \i2p-
VALS reduction) may produce a single value @aljes v- - -), they
take place ir | holes. VRROMOTE, promotes a single valueto
(values V. Because of the subscript * on the hole, it applies only
when multiple values are expected. ¥R0OTE demotes a single
value insidevaluesto just the value, and VBMOTEERR signals an
error if valuesdoes not return exactly one value. These two rules
apply only when avaluesexpression appears where a single value
is expected. All reductions take place@ to ensure that the final
result of any program is a single value. If we wanted to alloy a
number of values as the final result of a program we could cepla
C, with C, in all rules.

To get a sense of how evaluation proceeds, consider this+edu

tion sequence:

((lambda (y) y)
(apply-values(lambda (x) (values %) 1))

((lambda (y) y)
(apply-values(lambda (x) (values %)
(values J))

((lambda (y) y)
((lambda (x) (values ¥) (values }))

((lambda (y) y)
((lambda (x) (values ¥) 1))

—

(VPROMOTE)

—

(VAPPVALS)

—

(VDEMOTE)

45

— ((lambda (y) y) (values }) (VAPP
— ((lambda (y) y) 1) (VDEMOTE)
- 1 (VAPP)

First, the VARROMOTE applies and promotes 1 intedlues }
because it appears as the second argument aipply-values
expression. Then VAPVALS applies, followed by VAP Then
the term yalues) is used as an argument to a procedure, so
VDEMOTE applies and converts it to the single vallieFinally
VAPpapplies and the result s

The erroneous expression from the beginning of this section
signals an error due to the \MMOTEERR rule.

9 (3)

— (g (values 39
— error: expected a single value

The evaluation contexts and the three promotion and demotio
rules are all that we need to add multiple values to the laggua
Furthermore, the extension of adding names to holes does not
significantly complicate proof of progress for the systend so we
can prove the following theorem reasonably straightfodiye16]:

THEOREM3.1. For any closed programp in the language of fig-
ure 5, eitherp — p’, wherep’ is also closedp — e wheree is an
error indicator, orp is of the form §tore ((x v) - - -) v).

Proof is contained in the first author's master’s thesis.[16]

The strategy described in this section can be used whertever t
notion of a fully-evaluated subterm is different in diffateparts
of a program. For instance, it can be used to model embedded
sublanguages such as regular-expressions, format stang$SQL
commands, which could help develop theoretical underpisi
for work like Herman and Meunier’s static analysis of emtestid
languages [14].

4. Quote and Eval

Scheme inherits the meta-programming faciliteesl and quote
from Lisp [22]. Thequote operator turns a program into data and
the eval procedure turns that data back into a program. When
quoted, a program is represented as a list of lists and synbol
where lists represent parenthesized sequences and syrapods
sent identifiers. For examplegyote (lambda(x) X)) is a three el-

e = (ee--)|v]|x S = (s--)|n|sy
E = []|(v---Ee--") | (s---dotsy|(s---dotn)
v = (lambda(x---) €)| (quotesy) S = J[]l|(e---Ss-)
| p|null|n|prim|#t|#f | (lambda(x---)9
| (cconsv g | (cconsS 9
prim = eval|cons| car | cdr | eqv? n = numbers
p = pointers sf = (p(consvy)
X = program variables sy = names of symbols
(members obyexceptlambda, quote, ccong (identifiers exceptlot)
(store(sf; - -) E[(cons v v3)]) — (store(sf; --- (p(cons v v2))) E[p]) (ECoONS)
(p fresh)
(store(sf; --- (p(cons v, vg)) sk ---) E[(carp)]) — (store(sfi --- (p(consy, vy)) sk - -) E[Va]) (ECAR)
(store(sf; --- (p(cons v vg)) sh ---) E[(cdrp]) — (store(sfi --- (p(cons, vy)) sh - -) E[vg]) (ECDR)
(store(sf; - -) E[(eqv? p p]) — (store(sf; - - -) E[#]) (EEQV1)
(store(sf; - - -) E[(eqv? p p2)]) — (store(sf; - - -) E[#]) (EEQV2)
(p1 # p2)
(store (sf - - -) E[((lambda(x---) € v---)]) — (store(sf---) E[e[x---/v---]]) (EAPP
(#x = #v)
(store (sf - - -) J(quote sexp sexp - - -)] — (store(sf - - -) (cconssexp (quote sexp)]) (EQUOTESEQ)
(store(sf - -) §(quote ()] — (store(sf---) gnull]) (EQUOTENULL)
(store (sf - - -) §(quote n)] — (store(sf---) 9n]) (EQUOTENUM)
(store (sf - - -) J(cconsv; va]) — (store(sf--- (p(cons v v2))) Spl) (EQUOTEPAIR)
(p fresh)
(store (sf - - -) E[(eval V]) — (store(sf---)E[Z [(sf--),v]]D (EEvAL)
Z:(pr—(consvy) xv—s € :sxs—s
Z [Snull] =(€ [sexp, (sexp ---)] =(sexp sexp - -)
Z[Sn] =n € [sexp,n] = (sexp dot n)
Z S #] =#t € [sexn, sy] = (sexp dot sy)
Z (S #] =#f € [sexp, #t] = (sexp dot #t)
Z | S (quotesy) | =sy € | sexp, #f] = (sexp dot #f)
#[spl =C [#[Va], Z[Va]]

whereSbindsp to (cons v, Vy)

Figure 6. Core Scheme, extended with eval and quote

ement list whose first and third elements are symbols and evhos Evaluation reductions only apply to a program after it hasrbe

second element is a list of one element:

(cons(quote lambdg
(cons(cons(quote x) null)
(cons(quote x) null)))

completely compiled.

Each program consists of a store and an expression. Program
expressionsd) can be applications, values, or identifiers. Evalua-
tion contexts E) dictate that evaluation takes place in a left to right
order inside application expressions. The valugsie procedures,

R°RS suggests (but does not require) that quoted data be al-quoted symbols, pointers (to cons cells), null, numberispifive
located only once, before the program runs. In systems \vdh t

behavior (including all Scheme implementations we testdd}
program returngt:

((lambda (f) (eqv?(f) (f)))
(lambda () (quote (x))))

since the thunk passed &seturns the same result each time it
called.

Our core Scheme calculus for modeliegplandquoteis shown
in figure 6. (Note that this model simplifies5RS Scheme’sval
procedure in that it does not accept an environment argujrient

is

ensure that a datum behindjaote is inserted into the store only

once, the rewriting system is structured in two tiers roygiarre-
sponding to “compile-time” and “run-time.” Initially, pgrams are
just viewed as uncompiled s-expressions (elements o8 then-
terminal; note that we write dotted pairs witlot rather than a
period to avoid meta-circular confusion in our PLT Redex lgnp
mentation), which in particular include programs with caobtists.
Reduction rules that apply to these uncompiled expressiomsot
evaluate them, but instead compile them into program ezfmes
that do not contain quoted lists (elements of thaonterminal).

46

operations, and booleans.

The first group of evaluation rules (from E@S to EAPF)
correspond to the language’s runtime semantics, and shewvttteo
list primitives and procedure application behave.dS models
the application ofconsto arguments by allocating a new pair
in the store; andctar and cdr select the first and second values
in a pair by rules EGR and E®R. EEQV1 and EEV2 give
eqv?s semantics; it compares pointers for literal syntacticadity
(and, for this language, operates only on pairs). As in tlegipus
systems we have presented, procedure application is ntbtgle
rule EAPP as substitution. Since each reduction takes place in an
evaluation(rather tharcompilatior) context, they will only apply
to programs that are completely compiled.

The second group of rules (from EQTESEQto EQUOTEPAIR)
apply at compile-time and show how to compile a program by
rewriting quoted constants into locations in the storehdise rules
used théE context and quoted s-expressions were legal expressions,
quote would merely be a short-hand notation for building lists at
run-time and the above program would retéfpwhich would not
capture our intended semantics.

p = (store((xV) ---) (dw (dws- - -) €)) PC := (store((xV)---) DC)
e u= ...[(push(xed)]|(pop) DC == (dw((dws:-)C))
v := ... | dynamic-wind| call/cc C ;= (asinfigure 1)
dws == (xe@
PC[(dynamic-wind(lambda () e;) — PC[(begine; (DWWIND)
(lambda () &) (push(x; e e3))
(lambda () e3))] ((lambda (x2)
(begin (pop) e3 x2))
€2))]
(X1, X2 fresh)
PC[(dw (dws- - -) C[(pushxz e1 e2)])] — PC[(dw (dws- - - (x2 €1 e2)) C[0])] (DWPuUSH)
PC[(dw (dws; - - - dws,) C[(pop)])] — PC[(dw (dws; ---) C[O])] (DWPOP)
PC[(dw (dws; - --) C[(call/cc w)])] — PC[(dw (dws; ---) (DwWcCaLLcc)
C[(v1 (lambda (x)
(throw (dws; - -) CDA))D]
(x fresh)
PC[(dw (dws; - - -) C[(throw (dws; - - -) e1)])] — PC[(dw (dws; - -) (DWTHROW)

T [((x1 er e)dws ---), (%1 €3 &) dws --)]
T((x1ere)) (xeesed)]

Cl(begin 7 [(dws - - -), (dws; - --) |
e1))

T [(dws; --), (dws; -)]
(beginey -- v e3--)
(z1 # z2)

Figure 7. Additions to figure 1 to support call/cc and dynamic-wind

Instead, the second group of rewriting rules elimingtmte,
turning s-expressions into Scheme programs. Though wepgrave
sented them second, these rules will actually come firstnaton
sequences, making reduction sequences follow a two-plzdiszmp
where the EQoTErules apply in the first phase and the evaluation
rules apply in the second phase. Intuitively, programs is finst
phase are arbitrary s-expressions and values are Schegrams

As mentioned above, thevalwe present here and in section 6
is not as full-featured as thevalof the RS informal description
because it does not accept an environment argument. Mgdelin
an eval that took an environment argument would be somewhat
more involved but would essentially require only runnienpked
programs in an alternate store.

The technique used in this section applies generally to lan-

whereas second-phase programs are Scheme expressiors-and v guages in which computation of a term proceeds in multiplsph

ues are Scheme values. This parallelism can be seen partycul
clearly in the definition of the evaluation contexts for aggtion
expressions. 11, a rewrite may occur once all of the s-expressions
to the left have become Scheme programdE,la rewrite may oc-
cur once all of the expressions to the left have become valies
for the program above, the only rewriting rules that appy/those
that rewrite the thunk’s body. Once it contains only a paintea
store value, the outer application can proceed.

To modeleval we use a technique similar to Mulleraify [18].
The Z metafunction accepts a value and turns it back into a pro-
gram (the#” function is used byZ; it is just the syntactic analogue
of cong. Once# completes, evaluation continues as usual. Of
course, reification may produce an s-expression contagjiige.

In that case, the quote rules apply and put quoted date iatsttine
before evaluation continués.

1Most Scheme systems share quoted data even across callaltd-ev
example, our semantics producésfor the following program, but most
Schemes producé.

((lambda (f)
(eqv(f)
(eval(cons’quote(cons(f) '())))))
(lambda () '(x)))

We can adapt the definition o to handle this by special handling of
quoted forms during reification:

Z[Sp1]=V if Smapsp; to (cons(quote quotg p2) and mapps

to (cons V().

which causes our semantics to prodditdor the above example, but this
technique does not scale to a full Scheme that includes macro

47

that must be considered together — it is not sufficient in @sedo
write a preprocessor that moves quoted data in a progranthiato
store because that program could a@lhl at runtime. Scheme’s
macros are similar in this respect, so the technique showa he
could be used as a basis for modeling them. Staged and peadial
uation could also be modeled using this technique.

5. Call/cc and dynamic-wind

Scheme’slynamic-windfeature for annotating the dynamic extent
of a procedure call with entry and exit code that run whenéver
program flows into or out of that extent, either through ndrpna-
gram evaluation or through the invocation of continuatibjeots
made bycall/cc (the latter situation being the more interesting one,
of course). Unfortunately, thougtynamic-winchas a large impact
on the meaning of continuation objecill/cc produces, the RS
formal semantics does not include any mention of it and nsdel
call/ccwithout respect to it. Here we will show how it works in the
context of the core Scheme with mutation presented in se&io
Our strategy for modeling these new features is based lyeawil
earlier treatments [4, 10, 12].

The language in figure 7 consists of the core Scheme with
mutation as shown in figure 1 augmented vai#ti/cc anddynamic-
wind. The basic strategy we take is to maintain a stack of all
dynamic-windcalls entered but not yet exited, which we call the
dynamic-wind stack. When we capture a continuation, werteco
the current dynamic-wind stack. When we throw to a contiiomat
object, we use the difference between the current dynaritid-w
stack and that recorded dynamic-wind stack to determinetwhi
pre andpostthunks need to be called.

p ;= (store((ptrsV) - - -) (dw (dws- - -) €))
e = (ee--) |(feeg |(fed |(setlxe | (beginee---)
| (throw x dws: - - EC[e]) | (push(xe g €) | (pope)
| lam | mulam|v |x
lam ;= (lambda(x---)ee---)
mulam := (lambda(x---dotx)ee---)
v ;= fun | nonfun
fun = cp | mp | #%cons| #%null? | #%pair?
| #%car | #%cdr | #%set-car! | #%set-cdr! | #%list
| #%+ | #%— | #%/ | #%« | #%call/cc
| #%dynamie-wind | #%values| #%call—with—values
| #%eqv?| #%apply | #%eval
nonfun = pp | number | #%null | #t | #f
| (quote symbo) | unspecified
PC ;= (store((ptrsv) - --) DC)
DC = (dw (dws- - -) EC,)
EC =[] | (inert---EC,° inert---)
| (fECse@ |(if ECse) |(set!XxECs)
| (beginECee:--)
| (#%call-with—value$ (cwv-markeEC,) v°)
EC, = []o|EC
EC. =[]« |EC
inert = e |

dws == (xcpcp
sV w= Vv |(#%consvy |lam | mulam
s w= (s---) |(s---dotnsg |nss
nss == number | #t | #f | [variable exceptiot]
SC u= [|(e---SCs--")
| (if SCs9 | (if eSCs9) | (if e eSC)
| (if SC9) | (if eSC)
| (set!xSC)
| (beginSCs---) | (beginee---SCs--)
| (throw x dws: - - SC) | (push (x SCs) s)
| (push(xeSC)s) | (push(x e g SC) | (pop SC)
| (lambda(x---)SCs---)
| (lambda(x---)ee---SCs---)
| (lambda(x--- dotx) SCs---)
| (lambda(x---dotx)ee---SCs---)
| (cconsSCs) | (cconsv SC)
var := [variable exceptot and keywords]
X := [variable names]
pp ;= [pair pointers]
cp ;= [closure pointers]
mp := [u closure pointers]
ptr == X |pp|cp[mp

Figure 8. Grammar for full Scheme semantics

That strategy is formally encoded in three parts. First, de: a
a dynamic-wind stack to each program context. It contains on
dynamic context framedfvg for each annotated dynamic extent
in which the current evaluation is taking place. A dynaminteat
frame is a triple consisting of a unique identifier and gne and
postthunks of the correspondindynamic-windcall. The unique
identifier allows us to disambiguate multiple dynamic eailbns
of the same syntactic appearance afyaamic-windexpression.
Second, we add the primitive procedure vathgamic-windto
the set of values, which expects each of its three arguments t
evaluate to a thunk. Then using the DWN\W rule it invokes its
pre thunk, pushes a dynamic context frame onto the stack with a
fresh identifier and its owpre andpostthunks, evaluates its second
thunk, pops its dynamic context frame off the stack, evalsidts
postthunk, and finally returns the value its second thunk evelliat
to. To allow the program to manipulate the stack, we intredihe
pushandpop forms and their associated reduction rules DV¢R
and DWPRopr. The former pushes a new dynamic context frame onto
the end of the stack, and the latter pops the last contexiefiafin
the stack (and then evaluates to the trivial vaduavhich is never
used). These two forms are intended to be used onlgylmamic-
wind, never by the programmer directly.

The third piece iscall/cc. When call/cc is called, the DW-
CaLLcc rule builds a continuation object that consists of a pro-
cedure of one argument, a fresh identifier we will callhat pro-
cedure’s body is ghrow form that consists of the current dynamic
stack and the expression formed by pluggiigto the hole of the
evaluation context where the applicatiorcafl/ccitself was found.

A throw form is itself evaluated using the DWAROwW rule by dis-
carding the evaluation context in which it was found, replgdhe
dynamic stack with its own stored dynamic stack, and reptattie
entire program body with a specially-construcbestjin expression
built by the .7 metafunction (where T stands for “trim,” because
it trims away the common context frames leaving only the sedfi
whose pre- or post-thunks need to be executed). That functim-
pares its first argument, the dynamic-wind stack of the dyoam
context being exited, with its second argument, the dynamincl
stack of the context being entered. The first rule in its dedini

48

simply discards any common prefix the two stacks may havestwhi
correspond to dynamic extents that were never left or edhigue

ing the transitions from the time the continuation objecs waeated
and the time it was invoked. Then, once the two stacks have bee
trimmed to the point where they have distinct heads, the foveta
tion produces degin expression consisting of applications of all
thepostthunks from.7’s first argument, invoked in order, followed
by all theprethunks from.7’s second argument, invoked in reverse
order (which we indicate with the special notation,., indicating

a sequence being expanded out backwards).

6. Operational semantics for RRS Scheme

This section combines the techniques from sections 2 tlir&ug
with other known techniques for modeling programming laaggs

to build a model of RRS Scheme that includes all the features from
those sections along withand booleans, mathematical operations
(but not the numeric tower), list constructors, selectaratators
and predicates,-lambda procedurésapply, and object identity-
based equivalence. Although this section appears largeamd
plex at first, it is mostly just a simple combination of the\pogis
four sections.

This specification is executable, and the figures presemied i
this section were automatically generated from the souozke c
that implements the specification. Since an executabléfsaion
was an explicit goal of our work, we have made some modeling
choices that may not be obvious at first. For example, theze ar
many expressions whose return values are explicitly urisge

the RS Scheme document, such as the resultsafteexpression.
A non-executable specification might model the evaluatfdhase
expressions using the rule schema

V v. PQunspecifiel — PC[v]

2procedures declared with an improper list of formal argusieescribed
in section 4.1.4 of the Report that accept an arbitrary nurobarguments
beyond a certain minimum. The name dates back at least tanadiniver-
sity’s Scheme 84 system wheM8LAMBDA was a keyword used to declare
procedures that accepted any number of arguments andtedligrem in a
list[11].

meaning that an unspecified term reduces to any value. thstea
model unspecified results with a special valuespecifiedhat has

no associated reduction rules and will cause programstbpéct it

to get stuck. We also chose to ignore out-of-memory errdnesé
would be easy to add at the expense of a additional cluttenwhe
visualizing traces: reductions from each allocation sit¢he out-
of-memory error would suffice.

6.1 Grammar

The grammar for RRS Scheme programs is given in figure 8. In
that figure, a program (given by tteenonterminal) consists of a
store, a dynamic-wind stack, and an expression. & hentermi-
nal gives expressions, which in addition to standard Schemne
forms can behrow, push andpop, as in section 5. Valuew) are
either procedures or non-procedure values, but noticesyimaiactic

lambda terms are not values themselves. Instead, procedure val-

ues fun) can be references to procedures in the stopatdmp)
or the built-in procedures, while tHambda form, as we will see,
places new procedure values into the store when evaluatad. N
procedure valuesnpnfun include pair pointers, numbersyull,
booleans, symbols, and the unspecified value.

As in section 4, we write dotted pairs (as in the parameter lis
of a u-lambda) withdot rather than a period to avoid meta-circular
confusion in our PLT Redex implementation.

Section 6 of the RRS Scheme specification indicates that prim-
itive procedures are bound to names in the initial enviramigut

that those names can be mutated during the course of a program

To model that, we use special names with prefixes to indicate
the actual built-in procedures, and we bind those valuefeo t
#%-less names in the initial store:

(store ((list #%list) (cons #%cons(car #%cal) (cdr #%cd)
(pair? #%pair? (null #%null) (null? #%null?)
(set-car! #%setcar!) (set-cdr! #%setcdr!)
(+ #%+) (— #%—) (/ #%l) (x #%x)
(call/cc #%call/cg (dynamic-wind #%dynamiewind)
(values #%valuegcall-with-values #%cal-with—value$
(eqv? #%eqvR(apply #%apply (eval #%evd) - - -)

There are three different contexts we will make use of: mogr
evaluation contexts, dynamic-wind contexts, and expo@sson-
texts. Each program evaluation context (PC) contains & séord
a dynamic-wind context. Each dynamic-wind context (DC)-con
tains a dynamic-wind stack and an expression context. Bxjme
contexts (EC) are the contexts in which program evaluatdeg
place; they allow evaluation in marked sub-expressionscda
plication (as in section 2), the test positionsifoexpressions, in
set! expressions and in the first position ibbegin (as long as there
are at least two expressions in thegin). The evaluation context
for #%call-with—valuesis explained in section 6.7. The E@nd
EC. evaluation contexts anidert work like C, andC, andinert
from section 3.

The dws non-terminal corresponds to one frame of dynamic-
wind context information and its use is explained in secBoiihe
svnon-terminal generates values that appear in the store.

S-expressionss(and nsg and s-expression contexts (SC) cor-
respond to s-expressions and s-expression contexts frctiorsd.
There are more possible s-expression contexts in the fdluage
because there are more possible syntactic forms.

Finally, thex nonterminal represents both program variables and
binding locations, and thpp, cp, andmp nonterminals represent
pointers to pairs, fixed-arity procedures, and variabi-g@roce-
dures, respectively. Thetr non-terminal is a short-hand for terms
that index into the store. One subtle point here is thatwtipeo-
duction producepp, cp, andmpbut notx. Those variables are not
included because free variables are not values and bourzdbhes

49

have to be dereferenced before use, so neither qualifiesiagan
ducible value.

6.2 Relations

In the remaining figures, we will make heavy use of variousiced
tion relation symbols. The basic reduction relation we wik is

—, which indicates that the program term on the left reduces in
one step to the term on the right. We also use two other rekatm

aid in the system'’s readability, defined in terms of theaelation:

(&1 €)= €iff PC[(e] - - €))] — PCIe]
The application on the left reduces to the term on the right in
a program context, assuming that all of the expressionsen th
application are marked.

e e —° error: siff PC[e] — error: s
The term on the left signals an error, halting the programénm
diately.

6.3 Basic syntactic forms

Figure 9 shows rules for the basic syntactic forms. Foiiftfierm,

if the test position evaluates to anything other thdnthe term
rewrites to its “then” subexpression. If the test positizaleates
to #f, it rewrites to its “else” subexpression, if presamspecified
otherwise. For thdegin form, the evaluation contexts defined in
figure 8 ensure that the first term obagin expression containing
at least two expressions is evaluated fully; then theses redeise
begin expression that consists of a fully-evaluated value fodw
by one or more expressions to rewrite to a newgin expression
with the initial value dropped. These rules also specify #tzegin
form with only a single expression reduces immediately tat th
expression, even if that expression is not yet a value.

Because our model does not take into accoltRK Scheme’s
numeric tower, we model its numeric operations in terms wé tr
mathematical functions. We assume that we can identifyrine t
number represented by each numeric term and model eachicumer
procedure by performing the appropriate mathematical adjmer
on those true numbers: is modeled by summation on the repre-
sented numbers, is modeled by multiplication, and so on.

6.4 Cons and cons-cell mutation

The rules for constructing nesonscells are given in figure 10.
Since all cons cells are mutable and therefore can be disshed
even when they hold identical values, we cannot all&®¢ons v y
to be a value itself. Instead, tH&oconsrule introduces a new pair
into the store and reduces to a pointer to that new pair. Fbgigt
vy ---) rule rewrites to (@mbda x x) vy - - -), taking advantage of
the p-lambda application rules described in the next subsection

Figure 11 gives rules farar andcdr. Application of either pro-
cedure to a pair pointer rewrites to the contents of the gpjate
field in the pair being pointed to. If either selector is apgdlio a
non-pair value, the term rewrites to an error message.

The predicates in figure 12 are similarly simple. H¥épair?
procedure reduces t#t if its argument is identifiable as a pair
pointer and#f otherwise. Thet%null? procedure reduces t if
and only if it is supplied with the built-in null value.

Figure 13 gives rules foset-car! and set-cdr! for cons-cell
mutation. The#%set-car! and#%set-cdr! rules are the same as
the car andcdr rules, respectively, except that instead of reducing
to the current value of appropriate component of the paindei
pointed to, they replace that component with the given cepteent
then rewrite to an unspecified value.

6.5 Procedures and assignable variables

The rules in figure 14 handle variable lookup and variablégass
ment: a binding pointer is replaced with its value in the stwhen

PC[(fvier &) — PClel] PClbeginve e ---)] — PC[begine; e ---)]
(1 ##0 PCl(egine;)] ~ PCli]
PC[(f #fe1 e2)] — PCle] (+ - —° Iynp...
PCI(f vi e1)] — PCleq] (= 1 Tngl) —° I —(Eng--)
(v1 # #f) (—nh) —° [nl
. (x Ml .. —©° MIn---
PCI(f #f e1)] — PClunspecifiefl ¢ Tyl Tngl -+) o Iy /(TN .-)
(/ TmH) —° M1/
Figure 9. Basic syntactic forms
(store((ptrs svy)---) — (store((ptr; svi) - - - (p; (#%CONS Vor Vegr)))
DC[(#%C0n§ Vear® Vcdro)]) DC[pz])
(p; fresh
PC[@#%list® v1° - -)] — PC[((ambda (dot I) 1)° v;© - -)]
Figure 10. List constructors
(store ((ptrz svy) - - - — (store((ptr; sv;) - -- (#%null? #%nul) —° #t
(Pp; (#%coONS ¥ar Vegr)) (Pp; (#%cC0ONS Var Vedr)) #%null? v;) o #f
(ptriz SVig1) ") (ptritz SVit1) ") (v; # #%nul)
DC[(#%car pp;°)]) DClVear]) '
(#%car v;°) —e error: can't take car of non-pair | (#%pair? pg = #t
(vi € pp) (#%pair? v;) —° #f
(store ((ptrz svy) - - - — (store((ptr; svy) - - - (vi & pP)
(PP; (#%CONS Var Vedr)) (Pp: (#%cCONS Var Vedr))
(Ptrits SVigs)---) (Ptrit s SVigs)---)
DC[(#%cdr® pp;°)]) DC[Vear])
(#%cdr v;°) —¢ error: can't take cdr of non-pair
(vi € pp)
Figure 11. List accessors Figure 12. List predicates
dereferenced, and mutation of a binding pointer is reptesely eled by creating one new binding pointer in the store per &rm
replacing the value pointed to by the updd&émbda is the only argument where the value being pointed to by each pointéreis t
binding form in this semantics, so the rules for procedutks cae argument supplied in the appropriate position, and rengito the
the only ones that introduce new bindings. Procedure calmad- procedure’s body with these new bound-variable pointebstsu
eled by two features: closure introduction and procedupice tuted for occurrences of the formal arguments.
tion. Application of apu-lambda allocates a list for its extra argu-
The rules in figure 15 govern the introduction of closure val- ments, applies the initial portion of the arguments as ysarad
ues into the store. Like cons cells, procedures are not satlue applies the extra arguments into the last argument of theepitore

pointers to them are; procedures are modeled this way savihat that actually contains the body expressions. The funcflarsed
can modekqv?more accurately. The allocation rule for fixed-arity here is a metafunction that builds the syntax ebaslist from its
procedures is straightforward. The allocation felambda proce- arguments:
dures always puts two procedures into the store: a gtldmbda
procedure whose body contains a call to an ordinary proegdad

an ordinary procedure that contains the origindambda’s body ﬁ Hy 1 : g/‘)ﬁ]cucilns Xly-D
expressions.

The reason for arranging the system this way is so that when a
u-lambda procedure is applied, we can rewrite it into a cpoad- The last rules specify the behavior of Schenagplyprocedure
ing call to the fixed-arity code pointer and thereby use timeesee- which accepts a procedure and an arbitrary number of argismen
duction for both kinds of applications. The rules in figurest®w the last of which must be a list. It calls the procedure with th
this and the rest of the rules for application in detail. Thst fiule arguments and the contents of the list as subsequent arggirfien
shows how marks are placed in applications, which is jusnas i model it, the first two#%applyrules flatten out the argument list
section 2. Application of a procedure pointer to argumentaaod- and, when the list is exhausted, reduce to a normal applitati

50

(store((ptr; svy) - - - —
(pp2 (#%COnS Var Vcd'r‘))
(ptrit-z SVigq)--+)
DC[(#%0set-car!® pp;° Vpew®)])

(#%set-car!® v; ° v°) —¢

(store((ptr; svy) - -- —
(PP; (#%CONS Var Vedr))
(Ptriys SVit1)--)

(store ((ptrs svy) - -
(Pp: (#%C0NS View Vedr))
(Ptriys SVit1)--)
DClunspecified)
error: can't set-car! on a non-pair
(v1 & pp)
(store ((ptr; svy) - - -

(PP; (H%CONS Var Vinew))
(Ptrits SVigr)--)

(store ((ptry svi) - - - — (store((ptr; svq) - --
(x: sw%) (x; sv;)
(Ptriys SVigr)--) (Ptriys SVigr) -
DC[x;]) DC[sv])
(store ((ptrs svy) - -- — (store((ptr; svy) - --
(Xi SVi) (Xi Vnew)

(Ptrit s SVigr)--+)

DC[(set!X; Vnew)]) DClunspecifiet)

(Ptrit s SVig1) -

DC[(#%set-cdr!® pp;° Vnew®)]) DClunspecifiet)
(#%set-cdr!® v;° v°) —¢ error: can't set-cdr! on a non-pair
(V1 € pp)

Figure 13. Cons cell mutation

(store ((ptr; sv;) - - -) -
DC[lam;])
(store ((ptr; svy) - --) -

DC[(lambda (x; - - - dot x;-) e; € - - -)])

Figure 14. Variable mutation and lookup

(store ((ptr; sv;) - - - (cp; lamy))
DClep:])
(cp; fresh
(store ((ptrs svy) - -
(mp; (lambda (xq - - - dot X,) (Cp; X1 - - - %))
(cp; (lambda (X1 - - - %) €1 € - --)))
(mp;, cp; fresh

Figure 15. Procedure introduction

PC[(nert; --- e; inert; 11 ---)]

(store ((ptry svy) - -
(cp: (lambda (X1 - - *) €0dy1 €body2 * * *))
(Ptrits SVigs))
DC[(cpi® Varg1® -+ -)])

(store((ptrsV) - - -
(cp; (lambda(x; ---)ee---))
(ptrsy) ---)

DC[(CpiO Varglo o)])

(store ((ptr; svy) - --
(mp; (lambda (1 - - - doty) (cp: X1 - - - ¥)))
(Ptrits SVigr))
DC[(mp; Vp1° -+ VR® --)])

(store((ptrsy) - - -
(mp; (lambda (x3 - - - dot x) (cp x- - -)))
(ptrsy) --)

DC[(mp,O VarglO o)])
(nonfur? v° --.)

(store ((ptr; svy) - --
(PP; (#%CONS ¥ar Vear))
(ptriys SVigs)---)
DC[(#%apply’ V° Varg1°® - - - pp;°)])

(#%apply Vargt - - - #%null)

(#%apply VfO Varglo © Vigst®)

— PC[(nert; - -- ;° inert;4+1 - - -)]

— (store ((ptry svy) - -

(cp: (lambda (X1 - - *) €0dy1 €body2 * * *))
(Ptrits SVigz) -~
(Xa'rgQ Va.rgl) i)
DC[(begm ebodyl ebodyQ o ')[Xl T /Xa'rg2 o])])
(#Xarg = #Va'rg y Xarg2 =+ fresh

— error: arity mismatch

(#Xarg 7# #Varg)

— (store((ptr; svy) - --

(mp; (lambda (x; - - - doty) (cp: X1 - - - ¥)))
(Ptrits SVigr))
DCI(cpt Vn1® --- L[VR® ---])])
(#x = #v,)

— error: too few arguments

(#Xarg < #Varg)

—¢ error: can't apply non-function

— (store((ptr; svy) - - -

(PP; (#%CONS Var Vedr))
(Ptrits SVigs))
DC[(#%apply V¢° Varg1® - - Vear® Vear°)])

—° (Vf Varg1)

—¢ error: apply must take a list as its last argument

(Vlast € ppu {#%nu“})

Figure 16. Procedure application

51

)

)

(store ((ptrs svs) - - -) (store ((ptrs svs) - - +)

(dw (dws; - -) (dw (dws, - - +)
EC [(#%.call/c® vy °)]) ECi [(pushdws; €c2:1)]))
— (store((ptrs svs) - - -) — (store((ptrs svs) - -)
(dw (dws - - -) (dw (dws; dws; -)
EC1[(v1 (lambda (dot args) ECi[enext])

(throw x;. dws; - - -
EC1[(beginx; (#%apply #%values arg¥)))]))

(. x,, fresh) (store ((ptrs svs) - - +)

(dw (dws, dws; - -)

ECl [(pop enext)]))
(store ((ptrs SVs) - - -) — (store((ptrs s\) - -)
(dw (dws; - - -) (dw (dws; - - -)
EC;1 [(#%dynamie-wind® cp;® cp2° cps°)]) ECi[enest])
— (store((ptrs svs) - - -)
(dw (dws; - --) store ((ptrs SVs) - - -
EC; [(begin((cp1z]() ((d\,\,(gj)\,\,s1) .?))
push (x; cpr cps _ ECi[(throw x;, dws - - - ECa[e2])]))
(lambda (x2) (Pop (begin (cps) x2))) . (store((ptrs SW.))
(cp2)))D) (dw (dws - - -)
(x1, X2 fresh) (begin 7 [(dws: - - -), (dws; ---)]
EC[e]))
Figure 17. Call/cc and dynamic-wind Figure 18. Call/cc and dynamic-wind support
PCv1]« — PC[@#%values v;°)] (#%eqv? pp pp;) —° #t
PC[#%values$ v1°)]o — PClv{] (#%eqv? cpcp;) —° #t
PC[#%values vi° --)]s — error: wrong number of values| (#%eqv? numbarnumber) +—° #t
(v # 1) (#%eqv? y vq) —° #
(#%call-with—values Va5 Viun) —° (#%call-with—value$ PC[{#%equ? v;° v2°)] - PCl#]
(CWV;Tafk(szs)) (V1 # V)
Viun . e
PCl@%call-with—values o PCVfun® Varg® -] (#requ? vi®) —° eror: anty mismatch
(cwv-mark(#%values Va,g° - - -)) (#n #2)
Vfuno)]
(#%call-with—value$ v;° - - -) —€ error: arity mismatch
(#v; # 2)
Figure 19. Multiple values and call-with-values Figure 20. Eqv and equivalence
6.6 Call/cc There is one twist, though, since rather than dpply-values
Our technique for modelingall/cc and dynamic-wing shown in primitive given in section 3, PRS Scheme providesall-with-
figures 17 and 18, is essentially the technique from section 5 Valuesso we model it directly. To do so, we have to use the mech-
Apart from the change of using procedure pointers rather tha anisms described in section 3, along with a new context aunta
literal source text of procedures as required to model étyuake cwv-mark A term of the form #%call-with—values thunk f re-
section 6.8), the only substantial change is that the coation duces to #%call-with—values(cwv-mark(thunk) f); that is, it

procedures in this model accept any number of arguments. ThePlaces a special mark around the application of the thunkoto n

trimming metafunction? is the same function defined in section 5. arguments. At that point the evaluation contexts definedgn fi
ure 8 will apply and reduce the applied thunk in a multi-vatoae-

text. When that reduction sequence yields a result (whidhbeia
multiple-values expression), the entaall-with-valuesexpression

reduces to the application of the second procedure to thase p
Multiple values in the full language are nearly identicaintalti- duced values.

ple values in section 3, and in particular the context areament

and promotion and demotion rules are the same. Furtherenen, .

though the present system is much larger than the systerarpees 08 Edv? and equivalence

in section 3, the rules for multiple values are still comelgtor- Figure 20 shows the rules feqv? Since all mutable values (and
thogonal to the rules that implement the other features. procedures) are allocated in the stoegyv?is a simple matter

6.7 Multiple values and call-with-values

52

(store ((ptr; svy)---) —
DC[(#%evaf v;°)])
(store ((ptr; svy)---) —
(dw (dws; - -)
EC1[SCy[(quote (sy sz - -)IN)
(store ((ptr; svy)---) —
(dw (dws; ---)
EC1[SCi[(quote ()II))
(store((ptr; svy)---) —
(dw (dws; - -)
EC,[SCi [(quote numbei)]]))
(store ((ptr; svy) ---) —

(dw (dws; - -)
EC,[SCi[(cconsv; v2)ll))

(store ((ptry svi) - -+)
DCIZ [((ptrs svi) - -), v1]])
(store ((ptr; sv;) ---)
(dw (dws; - - -)
EC1[SC1[(ccons(quote s;) (quote (s - - -)))IN)
(store ((ptry svq) --+)
(dw (dws; - -)
EC1[SCi [#%nulll]))
(store ((ptry svq) - -+)
(dw (dws - - -)
EC,[SCi[numbei]]))
(store ((ptr; svi) - - - (PP1 (#%CONS Y Vo))
(dw (dws; - - -)
ECi[SCi[pp:]D)

(pp1 fresh

Figure 21. Quote and eval

of checking that the two values supplied have identical astit
structure (which we indicate here, as PLT Redex does, byateme
the same subscript for both arguments to éug? procedure to
indicate that the two subterms must be identical).

6.9 Quote and eval

The rules fort%evalandquotein figure 21 are essentially the same
as the rules foevalandquote in section 4. The main difference is
that the rewriting rules for replacing quote are nested an@text
inside an EC context. This only matters when usigeval In
particular, if the call to#%evalis in some marked context, SC
will not match properly, due to the marks. In the smaller chls,

we could get away with just using SC, since it also encomphsse
evaluation contexts, but here we must be explicit. The feifigtion

(Z) used here is as defined in section 4.

7. Related Work

Reduction semantics has been used to model large progrgmmin
languages many times and in many different ways. Fellessdin*
sertation [3], which introduced context-sensitive retutseman-
tics, gives a formulation of a substantially smaller larggighan

mantics [23], but we know of no formal correspondence betwee
his program and the denotational semantics itself.

8. Conclusion

We have presented a semantics fOIRS Scheme using context-
sensitive reduction semantics developed using PLT Redeihd
best of our knowledge, it formalizes more of the language tha
any other semantics for the language. In addition it shows ho
to model RS Scheme-style multiple return values in an small-
step operational semantics setting for the first time, andsga
new model for unspecified sequential evaluation ordersubas
nondeterministic choice. In the process, we have introdigegeral
new techniques for modeling programming language featiths
term rewriting.

PLT Redex and the source code for all the models presented in
this paper, including our executable model GRS Scheme, are
available for download at

http://www.cs.uchicago.edu/"jacobm/r5rs/

Acknowledgments

the one we present here that he calls “idealized Scheme,” andThanks to Kent Dybvig and Matthew Flatt for helpful discuss

Felleisen extends that model into thev-C'S calculus in later
work [4]. Since then, reduction semantics have been usedtzm
the cores of many languages including Emacs Lisp [19], Multi
isp [7], Java [9], ML [13, 24] and Concurrent ML [21] among ryan
others. Harper and Stone present a formal semantics fod&tgn
ML that includes a dynamic semantics encoded using a vaniati
on Wright and Felleisen’s notation; it is the largest exanpi a
programming language semantics given in a variant of réotuct
semantics we have found in the literature (with the possktep-

tion of our own semantics for /RS Scheme).

There has also been extensive work on the semantics of Scheme

Clinger presented an operational semantics for a core Seliem
the development of the notion of space efficiency [2]. Gadbic
Knauel, Sperber, and Kelsey have presented operationatiend
notational semantics fatynamic-wind12]. Ramsdell presented a
structural operational semantics for Scheme aimed at ftkiegin-
specified order of argument evaluation problem we discusslin
section 2 [20]. His model is less complete than ours (forainsg,

it does not include multiple return values) and is tied muairen
closely to the RRS Scheme formal semantics. Van Straaten has
written an interpreter based on th@RS Scheme denotational se-

53

of the technical details presented here and the inner wgskai
Chez Scheme [1] and MzScheme [8]. Thanks also to John Reppy
and Dave MacQueen and the anonymous reviewers for thefiuhelp
suggestions.

References

[1] Cadence Research Syster@hezScheme Reference Manual, 1994.

[2] William D Clinger. Proper tail recursion and space e#iuty.

In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementatjgrages 174-185, June 1998.

[3] Matthias Felleisen. The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State In Imperative Higeder
Programming Language$>hD thesis, Indiana University, 1987.

[4] Matthias Felleisen. Lambda-v-CS: and extended landadeulus for
Scheme. IrProceedings of the Conference on LISP and Functional
Programming 1988.

[5] Matthias Felleisen and Matthew Flatt. Programming lzages and
lambda calculi. Available online: http://www.cs.utahuéalt/

publications/plic.pdf, 2003.

[6] Matthias Felleisen and Robert Hieb. The revised reportte

syntactic theories of sequential control and stafEheoretical

Computer Sciencd02:235-271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

[7] Cormac Flanagan and Matthias Felleisen. The semarntiisuwre
and an application.Journal of Functional Programming:1-31,
1999.

[8] Matthew Flatt. PLT MzScheme: Language manual. Techni-
cal Report TR97-280, Rice University, 1997. http://wwwpl
scheme.org/software/mzscheme/.

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias [Eeen. A
programmer’s reduction semantics for classes and mixtasmal
Syntax and Semantics of Jaib23:241-269, 1999. Preliminary
version appeared in proceedings Rrfinciples of Programming

Languages1998. Revised version is Rice University technical report

TR 97-293, June 1999.

[10] Daniel P. Friedman and Christopher T. Haynes. Corstrgicontrol.
In Proceedings of the ACM Conference Principles of Prograngmin
Languages1985.

[11] Daniel P. Friedman, Christopher T. Haynes, Eugene betker, and
Mitchell Wand. Scheme 84 interim reference manual. Teclinic
Report 153, Indiana University Computer Science, 1985.

[12] Martin Gasbichler, Eric Knauel, Michael Sperber, andHard A.
Kelsey. How to add threads to a sequential language withetting
tangled up. IrProceedings of the 2003 Scheme WorksR2603.

[13] Robert Harper and Mark Lillibridge. Explicit polymadnsm and
CPS conversion. IProceedings of the ACM Conference Principles
of Programming Language4993.

[14] David Herman and Philippe Meunier. Improving the statnalysis of
embedded languages via partial evaluationPiaceedings of ACM
SIGPLAN International Conference on Functional Programgni
pages 16-27, New York, NY, USA, 2004. ACM Press.

54

[15] Rickard Kelsey, William Clinger, and Jonathan Reesif(td).
Revised report of the algorithmic language Schem&M SIGPLAN
Notices 33(9):26-76, 1998.

[16] Jacob Matthews. Operational semantics for Scheme eria t
rewriting. Technical Report TR-2005-02, University of Cago,
2005.

[17] Jacob Matthews, Robert Bruce Finder, Matthew Flatt] Btatthias
Felleisen. A visual environment for developing contextsigve term
rewriting systems. IProceedings of the International Conference on
Rewriting Techniques and Applications (RT2004.

[18] Robert Muller. M-LISP: A representation-independelidlect of
LISP with reduction semanticACM Transactions on Programming
Languages and Systenis=i(4), 1992.

[19] Matthias Neubauer and Michael Sperber. Down with Emacs
Lisp: Dynamic scope analysis. Proceedings of ACM SIGPLAN
International Conference on Functional Programmi2§01.

[20] John D. Ramsdell. An operational semantics for Schernisp
Pointers volume 2, April-June 1992.

[21] John ReppyConcurrent Programming in MLCambridge University
Press, 1999.

[22] Gerald Jay Sussman and Jr Guy Lewis Steele. Schemetémpiater
for extended lambda calculus. Technical Report Al Lab Menid-A
349, MIT Al Lab, 1975.

[23] Anton van Straaten. An executable denotational seicguior
Scheme. http://www.appsolutions.com/SchemeDS/.

[24] Andrew Wright and Matthias Felleisen. A syntactic apgeh to type
soundnessinformation and Computatigrpages 38—94, 1994. First
appeared as Technical Report TR160, Rice University, 1991.

Commander S — The shell as a browser

Martin Gasbichler

Eric Knauel

Universi@at Tubingen
{gasbichl,knauel}@informatik.uni-tuebingen.de

Abstract

Commander S is a new approach to interactive Unix shellsthase
on interpretation of command output and cursor-orientedhite
nal programs. The user can easily refer to the output of pusvi
commands when composing new command lines or use intezactiv
viewers to further explore the command results. Commandsr S
extensible by plug-ins for parsing command output and ferwi

ing command results interactively. The included job cdraxmids
garbling of the terminal by informing the user in a separaityet

and running background processes in separate terminatem@n-

der S is also an interactive front-end to scsh, the Schemg She

it closely integrates Scheme evaluation with command di@tu
The paper also shows how Commander S employs techniques from
object-oriented programming, concurrent programming, famc-
tional programming techniques.

1. Introduction

Common Unix shells such ascsh or bash make no effort to
understand the output of the commands and built-in commands
they execute on the behalf of the user. Instead they simpbcdi

the output to the terminal and force the user to interprettéixe

own her own. As subsequent commands often build on the output
of previous commands, the user needs to enter text that leas be
output by previous commands. As an example, consider alser t
wants to terminate her browser because it hangs once agasn. S
only knows the name of the executable{scape) but not the
process ID. Hence she first executesgheommand:

ps
PID
704

1729
1740
5823

TIME
0:00.30
6:01.35
8:10.03
0:00.07

COMMAND

tcsh

xemacs (xemacs-21.4.17)
netscape

tcsh

From the output, she learns that the process ID of the broisser
1740. Now she can issue thell command:

kill 1740

Even though the previoyss command already emitted the process
ID 1740, the user has to enter the number manually and double-
check to get the right one. Killing processes by name is sawom

that there is a wide-spread Perl program calletllall that termi-
nates all running processes with a given name. How&iar,all

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Martin Gasbichler, Eric Knauel.

55

® O O . .De.knauel:~/cool-stuff/scsh-nuit/scheme — scshvm

Commander S
[Command J—

>
=od ~/cool-stuffsscsh/ro-stable
=(runsbg (caty)

=

o -1 scsh % .som

smake &

=ls

>

[run:@ ready:Z stop:@ out:@ in:l]—

Pathz relative to tuebingen.de/homse/knouel/cool—stuff/scsh/r6-stable/scsh

libzcsh.h
libzcsh.o
Llibscsh._scm
libzcshvm.a
Linwes
Low-int.

315

Z KB
1 kB
315 KB
Z KB
2 KB
Z KB
16 KB
5 KB
2 kB
Z KB
5 KB

knauel :PUstaff
knauel :PUstaff
knouel -PUstaff
knauel :PUstaff
knauel :PUstaff
knauel :PUstaff
knouel ;PUstaff
knauel :PUstaff
knauel :PUstaff
knauel :PUstaff
knauel :PUstaff
knauel :PUstaff

Th-F-—F——
Th-F-—F——
W-r—r—
Th-F-—F——
b S Y

errupt .scm

Th-F-—F——
™I—T—
Th-F-—F——
Th-F-—F——

w5 _scm
md5.zcm.orig
meta-arg.scm

1

Figure 1. Commander S

is not appropriate if multiple processes with the same naxist e
but only one of them is to be terminated.

Commander S takes a different approach to the concept of
an interactive Unix shell: Commander S tries to understdmed t
output of the commands it executes and present it to the aser i
such a way that the user can easily refer to the output of uevi
commands. To that end, Commander S draws a user interface on
the terminal using the ncurses library. It divides the striggo
three areas as shown in Figure 1: The upper half of the screen
occupies theommand windowhere the user enters the command
line. The command line provides the usual line editing faed
such as cursor movement. Below is a small window, called the
current command windovwhich shows the last command being
executed. Theesult windowcovers the rest of the screen and
contains the output of the last command. The crucial poirihef
result window is that Commander S presents—for an extensil
of known commands—the result of the commands not simply as
text but as structured data. The user can change the focuslie
command buffer to the result buffer ametplorethe result. This
means that through various key-bindings, the user can eottker
commands that apply to the data presented in the result windo
Furthermore, the user cgrastethe data from the result window
into the command window to complete the next command line.

In the case of the example above, Commander S knows thatthe2. Preliminaries

result of theps command is a list of processes. It presents this list
in the result window as follows:

PID TIME COMMAND
704 0:00.30 tcsh
1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape
5823 0:00.07 tcsh

The result window shows the first line with inverted colorséagse

it is the focus objectSome key-bindings modify the focus object
only, while others affect the entire result window. Of cayrthe
user can also change the focus object with key strikes. Foligh

of processes, she needs to press the up and down arrowsufio ret
to the task of killing the browser, user needs to press thenday
twice and can then press the key for sending the focus olgj¢lcet
command window. Now, she only needs to addkh#l command

to the command line and press the return key to invoke it. df th
user were to kill several processes, she would have to mark th
for selection by making one after the other the focus object a
pressing the marking key. Then the key for pasting the Seleuwtill
send them to the command window. Sometimes it is desirable to
build the command line not only from the results for the mesent

command but from one or more commands that were executed

earlier. To support this, Commander S maintains a historyife
result buffer in which the user can go backwards and forwasds
necessary. This history makes the old results immediateljedle

and the user does not need to use the scrolling facility of the
terminal if a command with a larger amount of output happened
be before the result the user is searching for. The currentreand
window always informs the user, which command line produced
the output in the result window.

Commander S is also an interactive front-end to scsh, the
Scheme Shell. This is realized by a second mode, c&teme
mode for the command window, to which the user can switch from
the standardommand modwith a single key press. The interac-
tion between result window and command window also works for
the Scheme mode, but the representation of the pasted ®hject
s-expressions in this case. The combination of both modasies
the user to combine the power of Scheme with the brevity af she
commands.

In addition, Commander S extends the job control features of
common Unix shells. First, the job control facility disptaghe
list of current jobs in the result buffer with key-bindingsr fthe
common commands such as putting a job into foreground or-back
ground. Second, Commander S uses the ncurses library tmcont
uously display the status of the all current jobs. Finallgn@nan-
der S can execute a background job with a separate termidal an
allows the user to switch to the terminal, view the runningpat,
or enter new input. To that end, Commander S provides a tatmin
emulation which stores the output of the process.

1.1 Overview

Section 2 explains some programming techniques and planticu
braries used for implementing Commander S. Section 3 gimes a
overview on Commander S’s kernel and describes the implemen
tation of some central features of the user interface. Geetide-
scribes the interface for writing new viewers. Section Syies
some standard viewers such as the process viewer and thodjre
viewer. Section 6 provides details on the job control impeted

by Commander S. Section 7 lists some related work, and $e8tio
concludes and presents future work.

56

This section explains some programming techniques anadriéds
used to implement Commander S. A reader familiar with the par
ticular techniques may choose to skip the correspondintipsesc

2.1 Object-oriented Programming in Scheme

Theviewersdescribed in Section 5 and Section 4 undertake the task
of displaying the result of a command according to its strect
Viewers are implemented in terms of object-oriented progning
(Section 4 motivates this design decision). We used thecobyes-
tem proposed by Adams and Rees [2] as a foundation. Thissyste
is elegant, easy to implement and very powerful. The coraptet-
chinery needed for the object system is given by functiomsvsh

in Figure 2. The system represents an object as a procecatre th
binds the instance variables in its closure and accepts sagega
symbol) as its sole argument. It dispatches on the messabeean
turns the corresponding method as a proceduregseenethod).

All methods accept the object as their first argument to enthat
overridden methods always get the correct object. Heswegi, the
construct for calling a method, calfgt-method first to acquire
the actual method and calls that method with the objectfiges

the arguments passeddend.

2.2 Concurrent Programming using the Concurrent ML API

Commander S is implemented as a concurrent applicationrspaw
ing various threads. To synchronize the threads, Commahder-
ploys a Scheme implementation of the Concurrent ML (CML, for
short) concurrency functionality [7]. The implementatisrgiven

as a library that is part oBunterlih the Scheme Untergrund Li-
brary [1]. This section provides a short introduction to Hubset

of the CML API used throughout the implementation of Comman-
der S.

CML offers a collection of data-structures for the commanic
tion between threads. For the implementation of Commander S
synchronous channebnd placeholdersare important. A channel
offers asend operation that posts a value to channel ard@ive
operation that reads a value posted to the channel. The commu
nication is synchronous, thus,sand operation returns exactly at
the time when another thread triesteceive a value from the
channel (and vice versa). A placeholder is an updateableatel
lowing exactly one assignment. A thread reading the valua of
placeholder wittplaceholder-value blocks until another thread
updates placeholder with a value usipithceholder-set!. Up-
dating a placeholder already containing a value yields eor.er

The CML frameworks allows the decoupling of describing a
synchronous operation from actually performing the openat
Thus, synchronous operations become first-class valudledca
rendezvousn the CML notation. Thereceive operation on a
synchronous channel, for example, is composed of gengratin
rendezvous that describes synchronous operation (e. geiveea
message on a channel”) and waiting till the rendezvous tygtua
occurs. Thusreceive is implemented as follows:

(define (get-method object message)
(object message))

(define method? procedure?)

(define (send object message . args)
(let ((method (get-method object message)))
(if (method? method)
(apply method (cons object args))
(error "No method" message))))

Figure 2. Machinery for the object system.

(define (receive channel)
(sync (receive-rv channel)))

In whichreceive-rv is a constructor for rendezvous that describe
a receive operation on a synchronous channel sintt is the
function that blocks the thread until a rendezvous actutalkes
place, or phrased in CML terminology, beconeesbledSend and
placeholder-value may be decomposed in the very same way
usingsend-rv andplaceholder-value-rv.

CML provides combinators that combine multiple rendezvous
to a more complex rendezvous. The most important combinator
is choose, which waits for the first rendezvous from a given list
of rendezvous to become enabled. Commander S frequently use
select, the synchronous variant ehoose. Thewrap combinator
allows associating post-synchronization action form of a func-

tion with a rendezvous. When the rendezvous becomes enabled

the associated action is carried out. Function that sertleegsost-
synchronization actions accept one value — the value treatrbes
available upon synchronization of the corresponding event a
receive operation, for example, the value given to the adtioc-
tion is the value received via the channel. The followingregke
code illustrateselect andwrap:

(select
(wrap (receive-rv channel-1)
(lambda (value)
(placeholder-set! p value)))
(wrap (placeholder-value-rv q)
(lambda (value)
(send channel-2 value))))

Here, select combines two rendezvous associated with post-
synchronization actions and blocks until the first rendesvo
becomes enabled. The first rendezvous in question desaibes
receive-operation on a synchronous channel nantethnel-1.
Wrap associates a function with this rendezvous that places the
value received vighannel-1 in a placeholdep. The second ren-
dezvous describes the synchronous operation of waitinghier
value of placeholdeq becoming available. This rendezvous is also
associated with a post-synchronization function whicresathe
value that just became on-hand and sendsdhtmnel-2.

2.3 The ncurses library

Ncurses [3] is a C library that provides a high-level integfgo
terminal control. In practice a multiplicity of terminal ertations,
each having their own control sequences, is in use. Thus,szaall
tasks like placing the cursor at a certain position on theestbe-
come complex. To assure that an application is portableagthe
plications needs to know the escape codes of many terminal em
ulations. Ncurses relieves the programmer of this taskeGia
standardized abstract description of a terminal emulatioso-
calledterminfoentry, usually provided by the maker of the oper-
ating system, ncurses learns a particular terminal enoumlafihe
high-level interface of ncurses provides functions foatireg over-
lapping windows, outputting text, controlling the color aditput,
and placing the cursor. Ncurses also offers a functigetch for
reading input from the terminal that decodes the contralerges
the terminal emulation uses to encode special keys (suctirasrc
movement), to a standard representation. We set aside eysoirv
the ncurses functions used and instead explain their fomality
where occur in the following sections.

A separate library for scsh, callettsh-ncurses, provides
Scheme bindings for all ncurses functions using scsh’sigore
function interface. Writing the stubs needed to encode aad d
code C and Scheme values and calling the ncurses functiais is
most straightforward. Jusigetch requires special attention. The
wgetch function reads a character from the terminal, decodes the
control sequence if necessary, and returns an integer las. ¢b
no input is available, the behavior egetch depends on a global

57

mode: indelay modethe function blocks the process until the in-
put becomes available, whereasnon-delay modéehe functions
yields an error. From the perspective of a scsh user, eitbeers
unfavorable. Callinggetch in delay-mode blocks the whole scsh-
process and subsequently all Scheme thré4dsion-delay mode,

a Scheme thread waiting for input would have to wait busiyst
waste processor time. A preferable mode of operation isdokbl
solely the Scheme thread callirgetch. To achieve this behavior,
scsh-ncurses callswgetch in non-delay mode at first. fgetch
yields an errorscsh-ncurses calls scsh’sselect on the termi-
nal to block the Scheme thread callisglect until the terminal
becomes available for reading. Scsh uses the Webect call in-
ternally to wait for the file and socket descriptors assedatith
Scheme ports to become ready for reading and writing. Sssh al
offers select as Scheme function, which adds the Scheme ports
supplied as arguments to the list of file descriptors to watith
the internakelect.

3. Commander S’s kernel

The introduction left unspecified how Commander S recogrtize
meaning of a command’s output. The idea is not to executertie p
gram directly, but hand over this task to a function that rthes
program and parses its output. In the notion of CommandersS th
function is acommand plug-inA command plug-in registers itself
as a wrapper for the execution of a certain program. Disptathe
parsed output in the result buffer is not in the field of dutytrod
command plug-in. Insteadjewer plug-ingresent the output in a
structured way. A viewer plug-in registers itself as thespreer for
results of a certain type. Command plug-ins are expecteddo p
duce a result value of a distinguishable type. Thus, Comeragd
decouples command evaluation from presentation of theubutp
The kernel of Commander S may be regarded as a read-eval-
print-loop. Basically, a central event loop processes tipait, in-
vokes a command plug-in or executes an external program, and
chooses the viewer plug-in to present the result in the residfer.
In Scheme mode, usual Scheme evaluation takes place, bug-the
sult is displayed using viewer plug-ins as well. Thus, thelev
ation of Scheme expressions also benefits of the power ofeview
plug-ins. This section describes the crucial parts of CondeaS’s
kernel.

3.1 Eventloop

A central event loop receives all input of the terminal andides
what to do. Basically, the decision depends on two factotschv
window has the focus and whether the key pressed has special
meaning.

Keys with special meaning, such as theurn key, are treated
by the kernel. Thereturn key triggers the evaluation of a com-
mand.Cursor-up andpage-up Or cursor-down andpage-down
keys move through the command history and result histospee-
tively (see Section 3.6). The key sequemeatrol-x is treated
as a prefix, and thus modifies the meaning of the next key press.
The sequenceontrol-x o switches the buffer currently focused.
Control-x p andControl-x P paste the current selection and
the current focus value, respectively, into the commanéeby(see
Section 3.3).

If the command window has the focus and the key has no special
meaning to the kernel, the key event is passed to the funitien
plementing line-editing (see Section 3.5), which intetptbe key
accordingly and updates the command buffer. Before coimiiyin
the event loop, the command window needs to be updated totrefle
the new state of the command buffer. Thus, the event loop eall
function to repaint the affected part of the command window.

1Scsh employs a user-level thread system

(command-ling ::= (cmd) ((comb (cmd))* (job)’
(cmd) = (prog (arg™ (redin*
(redin == (> <|>>) (fnamé
| << (s-exph
(comh == | |&& | II];
(job) = & | &x
(prog = (str) | (unquote
(fnrame ::= (str) | (unquote
(unquoté =, (s-exphy | ,@(s-exph
(

(str)

scheme-string
| cted{a <>}

Figure 3. Command language

If the result window has the focus, the key event is passeukto t
viewer currently visible in the result window. Thus, excépmtthe
key sequences listed above, a viewer gets all key events.

3.2 Executing commands
How Commander S executes a command depends on whether th

command has been entered in Scheme mode or command mode. |

the command buffer is in Scheme mode, the kernel expectghe |
entered to be a Scheme expression and evaluates iteising The
command mode, in contrast, works akin the prompt of a trawkii
shell.

The commands entered in the command mode must conform
to the command languagef Commander S. Figure 3 shows a
grammar for the command language. Except for some minor dif-
ferences, this language largely accords to the syntax foncands
that users are accustomed to by traditional shells. A netdl
ference concerns strings, which Commander S models like scs
While a shell liketcsh distinguishes strings in single quotes,
double quotes, and backward quotes (for using the output of a
command as a string), strings in Commander S's command lan-

guage are always Scheme strings. The command language is im

plicitly quasiquoted. Thus, in contexts where a string ipested,

the user may use unquote and specify a Scheme expression to b

evaluated. Results of the evaluated expression may beng,stri
symbol, or an integer. This way, thesh commandkill ‘cat
/var/run/httpd.pid‘ that employs backward quotes to use the
contents of the fil¢var/run/httpd.pid as an argument farill
may be written aill , (run (cat /var/run/httpd.pid))

in Commander S’s command language.

Scsh already supplies a mechanism for running an exteroal pr
gram: therun macro. This macro expects a specification for the
program to run and the redirections of the input and outpaheh
nels as its arguments. The specification has special simtawt
tions calledprocess formand extended process forni8]. Com-
mander S includes a little compiler, which translates a camun
language command to a process form suitable for the usage wit

symbols and replaces them. To implement globbing, Commahde
uses the C shell compatible implementatiorgdéb that is part of
the scsh API.

The evaluation of Scheme expressions takes place in a sepa-
rate environment called thehell environmentThe basis for this
environment is the module definition of tlelell modulewhich
imports scheme-with-scsh, a module providing RRS and the
whole scsh API. The Scheme 48 module system facilitategngirn
a module into an environment suitable as an argument forBese
eval function. Thus, evaluating Scheme expressions boils down t
calling eval and using the shell environment as the environment
for evaluation.

The shell module redefines a choice of scsh functions torretur
a value with a distinguishable typBirectory-files serves as
an example; if called without arguments, this function nesuthe
contents of the current working directory as a list of stsinghis
representation is very handy when writing scripts. Howgtras
representation of directory contents is indistinguisbdi@m an ar-
bitrary list of strings. This poses a problem: the viewergaised to
display a result is selected by examining the result. Thesshell
module introduces a new record type-object, which encapsu-
lates a file-system object, and redefidggectory-files to re-
urn a list offs-objects. The redefinition oflirectory-files

alls the original definition oflirectory-files, imported with
a different name, and wraps the resulting filenamessifobject
records. So far the shell module only redefines a few funstibat
return filenames. An aim of future work is to apply this techua
to other parts of the scsh API as well.

3.3 Focus value table

Pasting values into the command window running in Schemesmod
requires an external representation of the value. Thisrevee-
stricts the set of values usable for pasting. For examplecsin s
records, continuations, and procedures have no extepragenta-
tion. Thus, Commander S allows pasting objects as a refeliate

a global table called thi@cus value tableView plug-ins may regis-

ter avalue in the table usingid-focus-object which returns an

integer index. The functiofiocus-value-ref returns the stored

galue at a given index. Hence, the viewer plug-in may avoia-co

verting a value to an external representation and returrlldaca
focus-value-ref instead.

3.4 Command plug-ins

Command plug-ins undertake the task of running a particedar
ternal program, parsing the program’s output and reprawgttie
result as an distinguishable type. The command plug-impgoex-
emplifies this. If a user enteps to see the list of running processes,
in the command mode of Commander S, this invokespthplug-

in. Theps plug-in runs the actugls program provided by the op-
erating system and parses its output. The result is repezsas a
list of process records, thereby making the result distinguishable
from an arbitrary list of strings and enabling viewers toogtize

run. Thus, when a user submits a command, the compiler gener-the type of the result.

ates a corresponding process form and Commander Segallsto
actually run the program as specified.

However, the compiled process form demands some prepara-

tions before it may be evaluated kyal: the run macro doesn’t
substitute shortcuts symbols widely-used by traditionalls.
These shortcuts include the tilde, which denotes the uberise
directory, environment variable names, ajidb-patternsA glob-
pattern specifies a list of files by a regular expression. Tihb g
pattern{/var/tmp, /tmp}/*.scm, for example, specifies a list of
all files with names ending inscm in the directoriegvar/tmp and

The functionregister-plugin! registers a new plug-in with
Commander S. The construct@ake-command-plugin creates
a new command plug-in record which contains three entries: A
name for invoking the plug-in, a completion function thatcca
lates completions for the arguments (see Section 3.7) haplug-
in function The kernel calls the plug-in function to run the com-
mand, parse the output, and produce the result value. thsiea
executing an external program, a plug-in function may atba
scsh function. The following code shows the command pluigiin
printenv as examplePrintenv returns a list of all environment
variables:

/tmp. Thus, Commander S inserts an expansion pass before evalu-(register-plugin!

ating a command that searches the compiled command focsi®rt

58

(make-command-plugin "printenv"

no-completer 3.7 Programmable completion

(l?mbda (command args) Most shells offer an automatic completion for commands agd-a
env->alist)))) . .

ments entered partially at the prompt. Usually pressing¢gtbelator
key while editing a command line at the prompt triggecoeple-
tion function This function considers the token of the command
line the user is currently editing (that is, the token whéeedursor
is) and finds a set of strings to which the partially enter&emas a
prefix. This set depicts the set of possible completion fertttken.
If there is more than one possible completion, most sheiplyi
display the possible completions and expect the user tdreent
editing the token until the prefix becomes unambiguous. Bépe
The feature users miss most when using scsh in an intera&é/e ing on the position of the token in the command line, the token
sion is line-editing. Line-editing involves making the kapace denotes a program to be executed or an argument to a program.
key work as expected, allowing the user to move the cursmigusi Thus, only executable files come into question as complgtion
the cursor keys, inserting text at an arbitrary positionhef tom- the command token, whereas, intuitively there no such cainst
mand line, and some extra features the user is accustomezhto f for argument tokens. Most shells accommodate this obsenvay
text editors. The scsh REPL does not provide line-editingabse using different completion functions for the particulakéas of a
it appliesread directly to standard input to read from the termi- command line.
nal. However, the command buffer of Commander S offers a line Popular shells likecsh, bash, andzsh offer aprogrammable
editing functionality with the features mentioned above &eds completion functiorwhich allow users to write completion func-
the input intoread (or the parser for the command language) only tions tailored to syntax of arguments of a specific commare: T
after the user has pressed thecurn key. The line-editing func- ~ file transfer prograndtp, for example, expects a host name to con-
tionality is implemented in terms of the ncurses (see Seai6), nect to as its first argument. The followingsh commands estab-

thus is portable and involves no emulation specific code. lishes an appropriate completion function fasp:

Theno-completer is a completion functions that offers no com-
pletions for a command (see Section 3.7). The scsh function
env->alist returns all environment variables as an association
list.

3.5 Line-editing

> set preferred_ftp_hosts=(ftp.gnu.org ftp.x.org)
> complete ftp ’p/1/\$preferred_ftp_hosts/’
3.6 Command and result history

Like conventional shells, Commander S offers a so-catleoh-
mand history A command history provides a way to access the
prior commands entered during the session. Most Unix sheits
the cursor keys to a function that cycles through the listavhe
mands and displays prior commands at the prompt. This fedur
especially useful when the user executes a series of sinolar
mands.

Besides the command history Commander S also provides a
sult history The motivation for this novel feature is a limitation of
traditional Unix shells that don’t provide a method to asctse
output or result of a prior command execution. In this casauser
falls back on a feature of her terminal emulation programesgnh
programs usually buffer the output of the terminal sessibus,
the user may scroll up and view the output of commands issued
afore. To reuse a prior result the user copies the text to dhe c
mand prompt using a copy and paste mechanism provided by the,
terminal program. This method, although exercised by nooeer
users, has at least two drawbacks. First, it may be hard tdHimd
wanted result — there may be lots of output to search throagh a
the wanted output may even be mingled with another procesges
put (see Section 6). Second, there is only access to a tefrat If a completion function returns a single possible completi
sentation of the result. . . . Commander S may replace the token on the command line with

Commander S saves the result objects created during arsessio g completion and repaint the command prompt. Howevéreife
in the result history. Thus, the user may go back in the résstory is more than one completion, Commander S uses the resuéirbuff
at any time and continue to use a saved result object. Thét resu display the list of completibns. The user may use the kst
history facilitates the task of finding the desired result acle aide to memory and continue to type the token, or by pressieg t

command is associated clearly with the result it producebiléV o 15t0r key a second time switch the buffer focus and selec
cycling through the result history, the active command wimd completion using the cursor keys directly.

shows the command used to produce the result shown in thie resu ~ The general completion functions also handles the comple-

This example specifies a completion for the first argumeny.onl
The possible completions for this argument are given asta lis
specified in the variablpreferred_ftp_hosts.

Commander S provides a similar programmable completion
function for the command mode. If the user presses the tatsula
key a general completion function calls the parser for thea-co
mand language and identifies the token the cursor is poirting
This token is considered for completion. Depending on ths-po
tion of this token a more specific completion function is stdd.
The completion function for command tokens is a built inta@€o
mander S and uses the union of executables available in the pa
listed in PATH and the set of registered command plug-in names
as possible completions. However, the user may wish to fgpeci
an executable by entering a complete path. In this case time co
mand completion function callsomplete-with-filesystem-
objects to build the list of completions. This function checks
whether there is a file or directory that matches the paytiai-
tered path. If the token matches a directory namepplete-
with-filesystem-objects oOffers the contents of this directory
as possible completions. Otherwise the parent directotigeopar-
tial names is searched for completions.

buffer. tion of arguments. Unless a specific a completion function fo
In the notion of Commander S, a result history is easy to im- the current command token is specified, it cabgiplete-with-

plement. Having the viewer objects (see Section 4) instnte filesystem-objects to complete the argument. Specific com-

kernel stores the object along with the corresponding comahira pletion functions are tied to command plug-ins. Thus, to/jafe a

a list that serves as the history. Thus, going back and forthé special completion function, the user adds a command piLigkie

history selects an existing viewer object that is set asteearrent ~ following command plug-in for thétp command provides such a
result object. Subsequently, the kernel clears the resottaw and completion function.

sends @aint message to the new current result object to make the
object visible. 2p/1 stands for “position one”

59

(register-plugin!
(make-command-plugin
"Erp
(let* ((hosts ’("ftp.gnu.org" "ftp.x.org"))
(cs (make-completion-set hosts)))
(lambda (command to-complete)
(completions-for
cs (or (to-complete-prefix to-complete) ""))))
just-run-in-foreground))

In this example, the second argumeninttke-command-plugin

is the completion function. A completion function has twguar
ments; the abstract syntax of the command line and the taken t
completed. The completion function in question uses a-uiist

of host names as possible completionske-completion-set
creates a special caching data-structure which speedsumth-
putation of matching completions. This is especially ukefien

the set of possible completion is big, for example, whendear
ing the completions for file names. The procedesepletions-

for searches and returns the matching completions for the prefix

returned byto-complete-prefix in the completion set.

4. Implementing Viewer Plug-ins

In the notion of Commander Swaewer plug-in(viewerfor short)
undertakes the task of displaying the result value of a comima
in a structured fashion. However, a viewer may go beyond just
displaying data and implement a small application runnmthie
result window. The predefined file system viewer (see Se&)pn
for example, not only displays files and directories but allbowvs
navigating through subdirectories.

Given a result value, Commander S tries to find the apprapriat
viewer. Each viewer comes with a predicate that identifieseisult
values the viewer handles. Commander S applies the predicat
provided by the registered viewers to the result value. Tibeer
belonging to the first predicate to evaluate to true accéygtdid.

is only available if the command buffer is in Scheme mode,
thus, the return value of this method has to be a piece of Sehem
code (as a string).

e get-selection-as-text This message asks the viewer to
return the current selection in a textual representatfoselec-
tions don’t make sense in context of a result value, this oteth
may return false. A boolean delivered as an argument says
whether the selection is to be inserted into the command or
Scheme mode. Thus, a viewer may deliver an adequate string
(see Section 4.2 for an example). It is conceivable though th
representing the selection as a string makes no sense.sIn thi
case a viewer may choose to understandsgite-selection-
as-text message as get-selection-as-ref message,
hence, requiring a reference to thecus-value-table. TO
facilitate this, thefocus-value-table is passed as a second
argument to thget-selection-as-text messages.

4.1 Selection lists

Before giving an example for the implementation of a viewier o
ject, we shall describselection lists Selection lists are an impor-
tant user interface widget, akin to menus, used by almosteaier
objects. A selection list displays a given set of entrieseggiential
lines at an arbitrary position inside an ncurses windowngshe
cursor keys, the user may move a selection bar over the linfes t
cus a particular entry, and mark and unmark entries. Mosterie
employ a selection list using marking to facilitate selegtitems
which are to be processed together. The selection list aserd
mines the area in view if the number of items to display exseed
the space assigned to the selection list.

The constructomake-selection-list expects as its argu-
ment a list of records of typelement that denote the items of
the selection list, and returns a Scheme record repregetignse-
lection list. Anelement record consists of a field that carries the
object to be returned if the user marks the accordant linepéelan

Now, Commander S instances a new viewer using the accordantsaying whether this entry may be marked at all, and the teleto

constructor and asks the viewer to paint itself to the resintow.

Viewers are implemented using object-oriented progrargmin
(see Section 2.1 for an introduction of the object systenduge
viewer depicts an object that accepts the messages sentrsl ke
and encapsulates a state. In this setting, an object-edequproach
appeared to be a natural choice. Commander S sends theifalow
messages to viewer objects:

e paint The paint message asks the object to paint itself to
the result window. This message is sent to objects justedeat
or if an result object becomes the current result object., (i.
if the user cycles through the result history, see Sectiéh 3.
As arguments, the objects receives the ncurses window b pai
in, a result buffer object which contains information abthe
result window's size, and a boolean indicating whether the
result window has the focus.

key-press If the result window has the focus, the current
result object receivesieey-press message whenever the user

displayed.

Thepaint-selection-list-at operation accepts a selection
list, window-based coordinates, and an ncurses windove @asgu-
ments and paints the selection list in its current state egihen
coordinates to the window. To pass key events to a seledsgn |
viewer objects call the functioBelection-list-handle-key-
press which updates and returns the state of selection list accord
ingly.

Implementing gget-selection-as-text method in a viewer
frequently boils down to getting the list of marked entriesnf
a selection list usingelection-list-get-selection, of, if
this list is empty because no entries are marked, gettingmniy
currently focused by the selection bar usisglection-list-
selected-entry. The selection list implementation offers the
functionmake-get-selection-as-ref-method which returns a
function suitable as an implementation of@t-selection-as-
ref method. The focus objects returned by methods implemented
using this function stand for the return object specified hia t

presses a key. The object receives the key code and a booleanycqordant1ement record.

saying whether the special prefix key sequetegtrol+x is
active as arguments. The kernel expects this method tonretur
an instance of the viewer and stores this instance in therkist
This is a clincher, since this allows a viewer to instanteate
return a different viewer. The viewer responsible for dagjrhg

the contents of a user record, for example, uses this case to

instance a directory viewer object if the user pressesmédey
on the line displaying the path to a user's home directory.

get-selection-as-ref This message asks the viewer to re-
turn the current selection as a reference ifil@us-value-

4.2 Example: process viewer

As an example for the implementation of viewers, this sectie-
scribes the implementation of the process viewer from th®-n
duction and sketches the implementation of the commandiplug
for ps.

The process viewer views the output of figecommand. Thes
command is a command plug-in based ongbetable ps library
from Sunterlib [1]. As theps command is not standardized, the li-
brary dispatches on the type of the host operating systenthamd

table (see Section 3.3) received as an argument. The messagdssues theps command with options chosen to get all processes

60

and a set of additional information available on all suppdplat-
forms. It then parses the output and stuffs it info a recortypé
process. Theps command plug-in does not currently support ad-
ditional options but returns this list unchanged. In theufat the
ps command should accept arguments to restrict the returreed pr
cesses and customize the additional information. Whilerasnt
parsing is certainly more work, a user who often switchesatpey
systems would certainly be happy to use the same set of sption
all platforms. Of course, the syntax of the options couldlgde
made customizable.

Figure 4 contains the implementation of the viewer plugein f
processes. The functiatake-process-viewer is the constructor
for process viewer objects. The constructor is called bykire
nel, if the predicate for this viewelist-of-processes?, iden-
tified a result value as a list of process objects. The keuygblees
the result value in question and the buffer to draw to as aegusn
to the constructor. The constructor returns a function ¢fan a
message name returns a function implementing the methednth
stance variables of the object are bound in the closure sftimc-
tion. The process viewer employs a selection list (see Gedtil)
to display a list of processeMake-process-selection-list
formats the process objects and usege-selection-list to
create a selection list that fits into the result window lagvone
line free for a heading. On paint message, the viewer displays
the header and calls the procedpsgnt-selection-list-at to
draw the selection list beneath the headekek-press message
is also forwarded to the selection list. Org@t-selection-as-

text message, it returns the PIDs of the selected processesfor th

command mode and a list of PIDs in the Scheme mode.

Finally, the last two lines of the figure register the process
viewer plug-in registers as viewer for a list of records opey
process and hands out the constructor to the kernel.

5. Predefined viewers

The previous section already presented Commander S’s vfewe
processes. In this section, we present further viewerslézytem
objects, user and group information and results of commagds
lated to AFS. In addition, a viewer for inspecting arbitr&gheme
values is described.

5.1 The filesystem viewer

Dealing with files is another common scenario where the user i
forced to re-enter text that appeared in the output of a peevi
command. A common pattern is that the user first issuegsan
command to list the files within a directory and then usesfzarot
command to manipulate certain files. To view the most receat e
log file of an Apache web-server, the user could firstuse-1at,
which prints the files sorted by date:

1s -1t

-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200
drwx--x--- 512 Jun 15 02:00 ./

-rw-r—--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

Next, she would invoke a viewer such asss on the latest file
error_log.1118275200

less error_log.1118275200

Again, the user has to enter text that appeared in the outpuire-
vious command. Modern shells suchtash or tcsh will help the
user to enter by providingommand line completioThis means
that the shell examines the command line already typed amd co
pletes the last token as far as possible or presents the gs¢i0&

61

(define (make-process-viewer processes buffer)
(let* ((processes processes)
(cols (result-buffer-num-cols buffer))
(lines (result-buffer-num-lines buffer))
(sel-list
(make-process-selection-list
cols (- lines 1) processes))
(header (make-header-line cols)))

(define (get-selection-as-text
self for-scheme-mode?
focus-object-table)
(let* ((marked
(selection-list-get-selection sel-list)))
(cond
((null? marked)
(number->string
(process-info-pid
(selection-list-selected-entry sel-list))))
(for-scheme-mode?
(string-append
"o (exp->string
(map process-info-pid marked))))
(else
(string-join
(map process-info-pid marked))))))

(lambda (message)
(case message
((paint)

(lambda (self win buffer have-focus?)
(mvwaddstr win O O header)
(paint-selection-list-at
sel-list 0 1 win buffer have-focus?)))

((key-press)
(lambda (self key control-x-pressed?)
(set! sel-list
(selection-list-handle-key-press
sel-list key))
self))
((get-selection-as-text) get-selection-as-text)
((get-selection-as-ref)
(make-get-selection-as-ref-method sel-list))
(else
(error "process-viewer unknown message"))))))

(register-plugin!
(make-viewer make-process-viewer list-of-processes?))

Figure 4. Implementation of the process viewer (excerpt).

possible completions. The shell derives the possible cetigpis
from the leading command, the default mode is to completécthe
ken as a filename. In the example above, the user could ashelie s
to complete the command liness e. The shell will expand this
toless error_log.111 and listall error files as possible comple-
tions. Now the user needs to inspect the output of the previsu
-1t command to learn that the name of the most recent file contin-
ues with arB. After entering this character, the shell is able to fully
complete the filename. However, while command line compteti
is certainly of great aid for the programmer, the shell agaakes
no use of the output of previous commands, which containsiin o
example the files in chronological order. If the example sgilace
within the tcsh shell, this is especially disappointing as thaee
is a built-in command. This means, the output is not produsyed
some external command but by the shell itself.

The user could try to save typing by combining entering a
command line that extracts the name of the newest error Iog fo
the output ofLs and callsless onit:

less ‘ls -1t err* | head -n 1°¢ group-info arename, gid, andmembers, the latter containing
the users of the group as a list of strings. Commander S centai
viewers for theuser-info andgroup-info records that present
the contents of the records in a selection list. The mairufeadf
these viewers is that the user may navigate through the iesbse
information by selecting an entry and pressing the retusn ker
thegid field, Commander S presents the corresponding group in-
formation, for thehome-dir, it invokes the filesystem viewer from

While this approach is close in the spirit of the Unix philpkg to
combine little tools to perform the work, the command linesither
long and fragile. We would not dare to use such a construction
the command-line for a command suchras It also requires the
user to know in advance that error logs (and only these) wiént
err.

Commander S knows that the result of the -1at command

is a list of files. It presents this list in the result windowfatows: Section 5.1 on the home directory, likewise for the11 field, and
i for the members of a group, Commander S presents the agsbciat

Paths relative to /usr/local/svn/logs user information. Here is an example for the value of the@sgion
—a " s ny-

-ru-r--r-- 5543 Jun 15 02:00 error_log.1118275200 (user-info "gasbichl"):

drwx--x--- 512 Jun 15 02:00 ./ [0: name] gasbichl

-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200 [uid] 666

-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400 [gid] 4711

-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400 . . X

-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600 [home-dir] /afs/wsi/home/gasbichl

—ru-r--r-- 4688 Jun 1 05:36 error_log.1117065600 [shell] /bin/tcsh

drwx—-x--- 512 Mar 25 2004 ../

If the user presses the return key, Commander S presentstine i
That is, the presentation of a list of files is the list of the fiames mation for GID 4711 as follows:
relative to a directory, which is displayed in the first linkthe

focus object is a directory and the user presses the retyyrihes [name] PUstaff
result window will display the contents of this directory fleturn [gid] 4711
to the task of viewing the latest log file, the user can immetija members :

press the key for sending the focus object to the commandomind gasbichl
as the focus object is already the most recent file. Now, she on klaeren
needs to add theess command to the command line and press the ~ knauel
return key to invoke it. Pasting files to the command windoseits
them as absolute filenames. If the command window is in Scheme
mode, pasting inserts filenames as strings.

If the user enters thes command, Commander S does not re-
ally invoke thels program and parse its output. Instead, it uses
the scsh functioffile-info to obtain the file status information and
the functiondirectory-files to get the contents of a directory.
From this information, it generates a list of records of tyfze 5.3 AFS
object. An fs-object combines a filename with file status infor- ~ This section presents two viewers related to the Andrew $ite-

The viewers are implemented in about 130 lines of code but al-
ready provide a nice tool for browsing user and group infdioma
We think that in this style a lot of information in the realmaix
can be presented and thus enable the user to browse thisnafor
tion very conveniently and fast.

mation. The filesystem viewer registers itself as the vidaet s- tem (AFS for short) as an example for using Commander S for

objects and for lists off s-objects. viewing the result of special purpose programs. AFS is a otw
As Commander S provides its own binding for the scsh proce- filesystem based on a client-server model. AFS stores the dat

duredirectory-files, which returns a list ofs-objects in- on the server in logical partitions callacblumes Each volume

stead of a list of strings, and extends the scsh functionsiwdper- is mounted at some directory below the gloBafs root. On the

ate on filenames tos-objects, the viewer is also able to present client, a local daemon transparently fetches and storescihients

the values of Scheme expressions returning lists of filesame of the volumes from the server and maps it into the local fezmy.
The functionality of filesystem viewer could be extended in AFS also introduces permissions for directories based casac

various aspects: additional key-bindings for renamindgtitey, or control list (acl for short) and has its own user managemEme.

copying files, manipulation of file mode bits, invoking of efaldt user views the permissions with tie listacl command and

application based on the filename suffix, and so forth. Howeve manipulates them with thes setacl command. For example:
while we would certainly like to have these features, it i$ the)
focus of our current work as programs like midnight commande # fs listacl .

or the dired plug-in for Emacs already show the merits of épis Access 13}5’0 for . is

proach. Instead, Commander S aims combine graphical geesen Normal rights:

tion with command execution and shell programming. Unlikesp system:administrators rlidwka
front-ends for filesystem browsers, Commander S is alsoimet | gasbichl rlidwka

ited to the presentation of filesystem objects. knauel rl

fs setacl . knauel rli

5.2 User and group information viewer . . __ .
group adds the right to insert files into the current directory foe tiser

User and group information are ubiquitous in Unix. For user i gnauye1l. Commander S saves the user from entering the username

formation, scsh provides the procedurger-info as wrapper that already occurred in the output by displaying the restits
for the standard C functiongetpwnam/getpwuid to return the listacl using a selection list:

user information from a given login name or UID. It returns a

record user-info with the fieldsname, uid, gid, home-dir, Access list for . is

and shell which contain the corresponding entries form the Normal rights:

user database (usuallfetc/passwd). For the group informa- system:administrators rlidwka
tion, scsh analogously provides a wrapgebup-info for the C gasbichl rlidwka

functionsgetgrnan/getgrgid. The fields of the returned record

62

By pressing the key for sending the selection, the user cste flae
string knauel rl to the command window running in command
mode behind &s setacl. Alternatively, the user may paste the
entry as a pair while in Scheme mode. This is especially isefu
set the rights of several users at once. For example, thenfiolg
expression grants the right to read, list and insert files list af
such entries which the user would paste from the result wirato
the place of. . .:

(for-each (lambda (acl)
(fs setacl "." (car acl) "rli")) ...)

On the other hand, the viewer fds listacl also supports di-
rect editing of the acl entries. Currently, pressing thestieh key
removes an entry from the acl. More features such as diredt-mo
fication of the rights would be desirable but requires fuoriity
beyond the current capabilities of the selection list.

Commander S also supports management of volumes. The com-

mandfs listquota takes as argument a directory and prints the
quota information for the volume the directory resides ihisTis
also a convenient way to obtain the name of the volume nedwed t
most volume-related commands. Commander S prints thet i@&sul
fs listquota as

Volume Name: home.gasbichl

Quota: 1000000
Used 899724
% Used 90%
Partition 28%

From here, the user can either paste the volume name intothe c
mand window or press the return key to executevib® examine
command on the volume. A future version will also supporéctir
editing of the quota.

The commands for volume manipulation also have command
line completion for the volume name argument. Commander S
receives the list of all volumes from the commarg 1listvldb.
Executing this command may take some time, therefore it s no
desirable to initialize this list during startup. Fortuelstt command
completion is completely programmable in Scheme and during
startup the corresponding plug-in can simply spawn a thnéach
issuesros listvldb and initializes the volume list. This way, the
user has to wait only if she wants command completionvies
before the thread finishes its work.

5.4 Value inspector
The domain of viewers is not limited to the results of Unix com

value or press the key return form the inspection of a sub-value.
For continuations, thé key selects the parent continuation. If there
are more than 14 sub-values, thdey switches the presentation
of the menu to the next 14 sub-values and so on. Finallygthe
key ends the inspector and sets the focus object of the cothman
processor to the last value that has been inspected. The @othm
processor also comes with glebug command which inspects
the continuation of the last exception that occurred. Apéesion

of a continuation displays an excerpt of the source code ®f th
corresponding function call before presenting the menis, it
enough to implement a very useful debugger.

For Commander S we implemented a viewer, calfespector
which shows the sub-values of an arbitrary Scheme value in a
selection list. The user may select a sub-value by moving the
selection bar to it and pressing the return key. In additiemhave
adopted the key-bindings farandd from Scheme 48.

For the implementation of the inspector, Commander S mainly
reverts to the procedugrepare-menu from the implementation
of the ,inspect command. The procedure takes as its argument
a Scheme value and returns the list of its sub-values as glés
name (or#f) and the sub-value. Commander S turns these pairs
into element records for a selection list: The object to be returned
on marking is the sub-value itself, all elements are maskadnd
the text is the external representation shortened to ththwitthe
window. For the latter, we make use bfmited-write, another
utility from Scheme 48 which is a variant efrite that limits
the output to a certain depth and output length. Unfortupate
the single line within a selection list of often not enouglasp
to present complex data structures in a useful manner. 8esid
the preparation of the selection list, there is not much tdato
the inspector: As theinspect command, it prints a source code
excerpt for continuation in a header line and being able tiorme
from a sub-value requires the viewer to maintain a stack sifed
values. Invoking the inspector on a sub-value pushes thermur
value on the stack and thekey pops a value from the stack and
makes it the current value. Thenspect command in Scheme 48
proceeds likewise.

We could use the inspector to display any value but we have
currently only registered it for the continuations of exiteps, but
this may be extended for arbitrary values.

6. Job control

Most Unix shells allow the user to run multiple processesusim
taneously. In shell terminology these processes are cplled A

mands. In fact, the user may add viewers for any kind of Scheme shell usually provides commands to stop and continue jolbsy v

value. Scheme 48 already comes with an inspection facitity t
browse arbitrary Scheme values. We have lifted the inspec¢a-
cility into our ncurses-based framework and use it as thaudef
viewer for exceptions which effectively implements a deiperg

We briefly review the inspection facility in Scheme 48: Its
command processor provides a commatdspect that takes as
its argument a Scheme expression, evaluates it and prebents
outermost structure of the resulting value in a menu. Thera i
menu entry for every immediate sub-value. For a list, the- sub
values are the entries of the list, for a record the sub-gaare
the components of the record, for a continuation the costefithe
stack frame makes up the sub-values. A menu entry consists of
number for selection by the user, an optional name for ratere
and the external representation of the sub-value. The sairihe
name depends on the kind of value being inspected: for redord
is the name of the record field, for environment frames it & th
name of the variables. List or vector entries do not have same
After the presentation of the menu, the user may enter theorum
of a menu entry to continue inspection with the correspogdirb-

63

the list of jobs and their status, and the job’s access rigrtse ter-
minal. All processes share a single terminal as their stanul#put
and input. The POSIX job control interface [5] enables thellsh
to control which process may read or write to a terminal. Frad
tional shells pursue the following policy: A single foregral job
has read and write access to the terminal and all backgralo |
are allowed write to the terminal only. If a background joledrto
read from the terminal, the shell suspends the executiomeojotb
until the job becomes the foreground job.

Thus, running multiple background jobs, which write to the
terminal yield a mingled output. Basically, the user has ¢Wwoices
to avoid this: redirecting the output of each job to a sepafitd,
or make the shell’'s job control stopping processes thaingiteo
write to the terminal. However, both options are disadvgetas.
A job control policy with exclusive write access may stop the
computation of a background job completely just becausesthe
is output available. This not appropriate in all cases, faneple
when running a daemon from the command line. On the other
hand, redirecting the output requires extra effort forisgtup the

redirections for standard output and standard error, vigihe file,
and deleting the temporary files afterwards.

Commander S adds a third method, not provided by traditional
shells, to the picture; so-callednsole jobsThe standard input and
output of a console job are connected via a separate psaudioa
to Commander S. A thread continuously reads the pseudortatmi
to ensure that writing to the terminal does not blockcénsole
record stores the pseudo terminals and the buffered outpLibb.
The viewer plug-in for this record type displays the outplthe
job in the result buffer and updates it continuously as netpuatu
arrives. Thus, the user may review the output of a commandyat a
time. Section 6.3 discusses console jobs in detail and pietee
implementation at a glance.

Beside console jobs, Commander S offers job control as known
from traditional shells. The implementation, however, etdges
from traditional implementations. We present a elegantuoent
implementation in the CML framework in the following seci®

Section 6.1 presents the POSIX job control facilities azagé.

A reader familiar with these facilities and their mode of i®n
may choose to skip this section. Section 6.2 describes haw-Co
mander S runs jobs without a separate console. Section pl&iex
the execution of console jobs. Section 6.4 describes thieimgn-
tation of the job list, a data structure that maintains ttierimations
on jobs centrally.

6.1 Traditional job control

The POSIX API contains functions for implementing job cohtr
which are widely-used by traditional shells. Scsh alreaayigdes
bindings to these functions. Thus, it was not necessarnnedesh
to implement Commander S’s job control. This section exigai
the basics of POSIX job control using scsh’s names for thelROS
functions.

Process groups are the basis for job control — a process group
is a set of processes, which share a common process grougreid. E
process is member of exactly one process group. When a groces
forks, the child process inherits the process group id ofpie
ent — the process is said jwin the parent’s process group. A pro-
cess may alsopena new process group by callimgt-process-
group. Each terminal device is associated with one process group,
named theoreground process groyll other process groups are
called background process groupé process group makes itself
to the foreground process by callisgt-tty-process-group.
In contrast to processes of background process groupsgses
of the foreground process group are granted read and write ac
cess to the terminal. If a background process tries to reawm fr
the terminal, the kernel terminal driver suspends the jobguthe
SIGTTIN signal. Depending on the configuration of the terminal a
background job writing to the terminal may also be suspenged
ing theSIGTTOU signal. Usingwait, a parent process may watch
if a child gets suspended.

6.2 Jobs without console

Jobs without a separate console are either foreground de- bac
ground jobs and work akin to jobs in a traditional shell. Te@axe

a foreground job, Commander S temporarily escapes the curse
mode and hands the control on the screen over to the foregroun
job. Once the foreground jobs terminates (or gets suspeygled
signal), Commander S reobtains control. Commander S exect
background job neither to read from nor write to the termiifal
the job tries to read or write, however, the job gets suspeade
Commander S notifies the user (see Section 6.4). In this base t
user may choose to continue the job in foreground. Vice versa
user may also explicitly stop a foreground job and contitnegob

in background.

64

(define-syntax run/fg
(syntax-rules ()
((_ epf)
(run/fg* ’ (exec-epf epf)))))

(define (run/fg* s-expr)
(debug-message "run/fg* " s-expr)
(save-tty-excursion
(current-input-port)
(lambda ()
(def-prog-mode)
(clear)
(endwin)
(restore-initial-tty-info! (current-input-port))
(drain-tty (current-output-port))
(obtain-lock paint-lock)
(let ((foreground-pgrp
(tty-process-group (current-output-port)))
(proc
(fork
(lambda ()
(set-process-group (pid) (pid))
(set-tty-process-group
(current-output-port) (pid))
(eval-shell-env s-expr)))))
(let* ((job (make-job-sans-console s-expr proc))
(status (job-status job)))
(set-tty-process-group
(current-output-port) foreground-pgrp)
(newline)
(display "Press any key to return...")
(wait-for-key)
(release-lock paint-lock)

job)))))

Figure 5. Running a job in foreground.

The machinery for running jobs is built on top of scshim
form. The form (run/fg epf) executes the extended process
form epf as a foreground job. To specify a program to run and
the corresponding redirections of the input and output ohbn
scsh uses a special syntactic notation: process forms @eadded
process forms. Thusun andrun/fg are implemented as macros
not as functions.

Figure 5 shows the implementationtin/fg. Applications of
run/fg expand into a call taun/fg*; a function that expects
a piece of Scheme code as a s-expression as its argument. The
Scheme code is supposed to actually run the process using scs
basicexec-epf facility. Unlike run, exec-epf does not fork the
process before running the progragan/fg* callseval-shell-
env to evaluate the Scheme code in the shell environment. It is
important that the evaluation takes place in the shell envirent
since an extended process form is implicitly backquotedis thy
using unquote, a user may embed Scheme code in an extended
process form. Carrying out the evaluation in the shell @mrinent
ensures, for example, that the user may refer to variablfasede
interactively in the Scheme mode or use focus values.

Before running the process usiegal-shell-env, run/fg*
calls a sequence of ncurses functions to save the currezgrscr
clear it and finally escapes the curses mode temporarilygusin
endwin. This yields an empty screen called tlesult screenThis
avoids that the Commander S screen is garbled with the oafput
the process. To execute the proceasy/fg* forks the process,
opens a new process group, and makes this process group the
new foreground process group. The parent process gaks-
job-sans-console to create a new job record with the process
object returned byfork. The parent process usgsb-status;

a wrapper version ofait for jobs. Thus, the parent waits until

the child process exits and makes itself the foregroundgs®c
group again. Afterwards, the parent process waits for a kegsp

to give the user time to read the child’s output. It is essénti
to ensure that no output occurs during the time Commander S
is a background process — otherwise the terminal driver @oul
suspend Commander S. To enforce this conditian/bf obtains
thepaint-1lock which prevents other threads, such as the thread
that updates the job status indicator (see Section 6.4), fainting
onto the screen.

Running jobs in background works alike using a function
run/bg*. There, the code for escaping from the curses mode and
setting the foreground process drops out. On start-up, Gomm
der S configures the terminal to stop background procesaesyh
to write to terminal, thus, a background cannot garble theest
Commander S offers two functions for continuing suspendéd |
without a consoleContinue/fg puts a stopped job into the fore-
ground and continues the jobentinue/bg, vice versa, continues
a job as a background job. The implementation of this fumstis
derived from the implementation efin/fg* andrun/bg*. How-
ever, instead of forking and callingzec-epf, the functions send
the process group of the jobSAGCONT signal, thus, the processes
continue to execute.

6.3 Console jobs

The implementation of console jobs is more complex thanrthe i
plementation of jobs without console. While there is no@xffort
needed to display the output of job without console — it isyonl
visible on the separate result screen — the output of consbte
causes more effort. The output of a job must be read by Comman-
der S continuously to keep the job running. However, display
the output in the result buffer as it occurs is not reasonabline
job would behave like an ordinary foreground job.

Here, the concept of viewer plug-ins comes into play. The out
put of a console job is represented bycensolerecord. An ac-
companying viewer plug-in for this record type displays ¢lgput
and updates the result buffer as new output arrives. To tireke
console is conceptually just another value with a predefuiader
plug-in. Each console is accompanied by a thread that réwes t
pseudo terminal of the process and sends the characterintead
a synchronous CML channel. Thus, this thread lifts I/O evantb
the CML framework.

To actually paint the contents of the output buffer to thesnr
the console viewer plug-in uses a so-caltedminal buffer The
heart of a terminal buffer is a thread spawned by the funatimwn
in Figure 6. The terminal buffer is connected via the synnbrs
pty-channel to the thread that reads the console’s output. De-
pending on whether the console is currently visible in theulte
buffer or not, the terminal buffer either buffers the newpuit(by
calling terminal-buffer-add-char) or buffers it and immedi-
ately repaints the result buffer. The decision whether watgp the
result buffer or not is left up to the console viewer plugswhich
usesresume-console-output Or pause-console-output tO
stop and continue the updates, respectively.

The terminal buffer performs a second task hidden in the-func
tion terminal-buffer-add-char. Basically, this function imple-
ments a terminal emulator for a small subset of VT100 control
codes. The terminal emulation is necessary to restrict fieete
of terminal escape codes generated by the running job tethatr
buffer only. Forwarding the escape codes rawly to termirah€
mander S is running on yields undesirable effects. If thening
job outputs the escape code to clear the screen, for exathde,
escape code would be interpreted by the terminal emulatdhéo
terminal Commander S is running on, and clean the entiresere
including the command buffer. Alas ncurses offers no sofutd
this problem.

65

(define (spawn-console-loop
pause-channel resume-channel
window termbuf pty-channel)
(spawn (lambda ()
(let 1p ((paint? #t))
(select
(wrap (receive-rv pause-channel)
(lambda (ignore)
(1p #£)))
(wrap (receive-rv resume-channel)
(lambda (ignore)
(1p #t)))
(wrap (receive-rv pty-channel)
(lambda (char)
(cond
((eof-object? char) (1lp paint?))
(else
(terminal-buffer-add-char
termbuf char)
(if paint?

(begin
(curses-paint-terminal-buffer
termbuf window)
(wrefresh window)))

(1p paint?))))))))))

(define (pause-console-output console)

(send (console-pause-channel console) ’ignore))
(define (resume-console-output console)

(send (console-resume-channel console) ’ignore))

Figure 6. Updating aterminal-buffer and painting it.

6.4 Job status and job list

A job is in one of the following run states: running, finished,
stopped, waiting for input, or waiting with output (the Etapplies

to background jobs without a console only). Traditionalllsheo-
tify the user either immediately or before drawing the nexinppt

if the status of a job changes. Both methods have drawbacks:
prompt notification means that the shell prints the notifacatli-
rectly to the terminal at point of time the status change oxdhus
garbling the terminal output. Waiting for the next prompbials a
garbled screen, but the user has to issue (empty) commaords fr
time to time to see if a status change occurred. A graphical us
interface produces relief for this problem.

Commander S’s command buffer displays a small gaugéothe
status indicatorin the lower right corner of the command window
(see figure 1). The job status indicator displays the cumaniber
of processes in each of the possible state. Whenever this sioa
jobs changes, a thread updates the job counts immediatiiguwti
disrupting the user.

Commander S uses a centjab list to maintain a list of all
jobs. The job list serves two purposes. First of all, it is dek
to implement thejobs command, which prints a list of all jobs
and their current state. As a second task, the job list Egistll
status changes of a job and informs the job status indicéiouta
the change.

The implementation of the job list was tricky — there are
several sources of events that modify the state of the jabAis
user may submit a new job at the prompt, stop or continue a job,
or a background job may interrupt or finish its execution. §hu
the job list needs to observe several diverse sources fortsewat
once. First of all, user commands such as submitting, coimtip
or stopping a job need to inform the job list about the jobustat
changes. The termination or suspension of a backgroundigobs
the second source for events that trigger changes in the stat

the job list. To notice these changes the job list needs tb cal
wait for each background job and update the job list. Using the

XEmacs and GNU Emacs ship withired, a special mode for
editing directory trees [10]. The GNU screen [4] terminalvager

CML framework these diverse sources for events may easily be allows users to detach from a terminal and reattach to it,latel

represented uniformly as rendezvous. Thus, one cesébdct
synchronously waits for the occurrence of any of the namedtsv
Figure 7 shows an excerpt from the implementation of the job
list. The functionspawn-joblist-surveillant starts the thread
that maintains the job list and returns theatistics-channel.
This channel connects the job list with the job status indica—
whenever the state of the job list changes in a relevant \wayjob
list posts the updated job counts to this channel and thadhae-
companying the job status indicator updates the gage. Teadh
spawned byspawn-joblist-surveillant executes an infinite
loop that useselect to choose a rendezvous from the possible
sources of events affecting the job list. The job list coissié lists
for each run state that are bound locally in the thread. The lo
variablenotify? indicates whether an update of the job status in-
dicator is due. If this is the case, the thread sends the rujob
counts tostatistics-channel. The constructor for jobsake-
job-sans-console and make-job-with-console submit the
jobs just created to job list using tl@d-job-channel. If a ren-
dezvous on thedd-job-channel is enabled, the function associ-
ated to this event by therap combinator adds the new job to the
list of running jobs and continues the loop. In this case atatgof
the job status indicator is due, thus the loop function itedalvith
#t as the value fonotify?. Receive rendezvous on thetify-
continue/foreground-channel indicate that the user issued a
continue/fg Or continue/bg command. Thus, a job that is ei-
ther stopped, waiting with output, or waiting for input clgas to
the running state. The accordant action for this eventseketbe
job from the lists for stopped jobs, adds it to the list of ringnjob,
and setsiotify? to true. Theget-job-list-channel is used by
the jobs command to get the list of all jobs.

The job list also monitors the status changes of the prosesse

usingwait. The constructor for jobs spawns a thread that calls
wait on a job’s process object, and fills a CML placeholder with
the status value returned lit. The functionjob-status-rv
returns the corresponding rendezvous. This way, the sthtusge

of a process translates to a CML rendezvous suitable fayriatien
with the job list's select call. Thus, the job list surveillance
thread includes thgob-status-rv for all running jobs into the
selection of rendezvous by mappiggb-status-rv on the list

of all running jobs. The function associated with each remdas
adds and removes the affected job to the correspondingdfsts
jobs in a specific state. The scsh functigtisatus:exit-val,
status:stop-sig, andstatus:term-sig decode thestatus
value returned byjob-status-rv. Depending on whether the
process exited, was suspended or terminated abnormadiye th
functions return#f or an integer providing further information
on the reason of state change. If the operating system siispen
the process, for exampletatus:stop-sig returns the signal
number that yielded to suspension.

7. Related Work

There is multiplicity of file managers available that folltiwe tradi-
tion of the abandoned Norton Commander, such as the GNU Mid-
nightCommander [6] or LFM [8]. These applications use mdst o
the screen to display one or two file lists which the user may na
igate, use to select files, and perform operations on them |83t
line of the screen shows the shell prompt of a traditional shleus,
these applications are clearly committed to work with filekely.

To Commander S, working with files is just one facet of a more
holistic approach for easing the work with a shell. The GNWMi
nightCommander comes with job control for background jolis b
these “jobs” are merely running copying and moving operetio

66

offers some text based copy and paste mechanism. This psoaid
functionality akin to Commander S'’s console jobs.

8. Conclusion and Future Work

This paper presented Commander S as a browser for UNIX. With
the aid of command plug-ins, Commander S parses the output of
commands and acquires the contained information. Viewsy-pis

use the ncurses library to present the output informatiantesac-

tive content. Commander S contains plug-ins for the mostraom
entities in shell interaction, processes, and filesystemerts. The
paper shows that it is possible with little effort to extengh@man-

der S to other domains. Through the use of the CML library, the
implementation of the job control is very short, even thoitghk
more powerful than in common UNIX shells and even contains a
small terminal emulator for running processes in the bamlgd
while saving their output.

The technique presented in this paper could be used to presen
other information such as DNS result records, or the coateht
NIS or LDAP databases. As Commander S closely integrates an
evaluator for Scheme expressions, the user can alwaysafzdl to
writing small programs if the power of the command language o
the viewers does not suffice to accomplish a task.

One conceivable extension of Commander S is the integration
with the Orion window manager which is also based on Scsh.
In this combination, Orion would start several Commanden-S i
stances concurrently, and assign every instance its owrdpder-
minal and Xterm window.

Acknowledgments Christoph de Mattia wrote th&csh-ncurses
bindings and an early prototype of Commander S caiesh-

References

[1] Sunterlib — the Scheme Untergrund library, 2005. Avaléaat
http://www.scsh.net/resources/sunterlib.html.

[2] Norman Adams and Jonathan Rees. Object-oriented progiag in
Scheme. IPACM Conference on Lisp and Functional Programming
pages 277-288, Snowhird, Utah, 1988. ACM Press.

[3] Eric Raymond, Zeyd Ben-Halim, and Thomas DickeWriting
programs with ncurse004.

[4] Oliver Laumann et al. GNU Screen 4.0.2 user manu&005.
https://savannah.gnu.org/projects/screen/.

[5] Donald. A Lewine. POSIX Programmer's Guide O'Reilly &
Associates, Inc., 1994.

[6] Pavel Roskin and Miguel de Icaza. The GNU MidnightComutem
2005.http://www.ibiblio.org/mc/.

[7] John H. Reppy. Concurrent Programming in ML Cambridge
University Press, 1999.

[8] Ifiigo Serna. Ifm —last file manager, 2004ttp://www.terra.
es/personal7/inigoserna/lfm/.

[9] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler,caMike
Sperber. Scsh Reference Manya003. Available fromhttp:
//www.scsh.net/.

[10] Michael Sperber. Dired. http://www-pu.informatik.
uni-tuebingen.de/users/sperber/software/dired/%.

(define (spawn-joblist-surveillant)
(let ((statistics-channel (make-channel)))
(spawn (lambda ()
(let 1p ((running ’()) (ready ’()) (stopped ’()) (new-output ’())
(waiting-for-input ’()) (notify? #f))
(cond
(notify?
(send statistics-channel ...)
(1p running ready stopped new-output waiting-for-input #f))
(else
(apply select
(append
(list
(wrap (receive-rv add-job-channel)
(lambda (new-job)
(1p (cons new-job running)
ready stopped new-output waiting-for-input #t)))
(wrap (receive-rv notify-continue/foreground-channel)
(lambda (job)
(1p (cons job running) ready
(delete job stopped) (delete job new-output)
(delete job waiting-for-input) #t)))
(wrap (receive-rv get-job-list-channel)
(lambda (answer-channel)
(send answer-channel ...)
(1p running ready stopped new-output waiting-for-input #f))))
(map
(lambda (job)
(wrap (job-status-rv job)
(lambda (status)
(cond
((status:exit-val status)
=> (lambda (ignore)
(1p (delete job running) (cons job ready) stopped
new-output waiting-for-input #t)))
((status:stop-sig status)
=> (lambda (signal)
(cond
((= signal signal/ttin)
(1p (delete job running) ready stopped new-output
(cons job waiting-for-input) #t))
((= signal signal/ttou)
(1p (delete job running) ready stopped
(cons job new-output) waiting-for-input #t))
((= signal signal/tstp)
(stop-job job)
(1p (delete job running) ready (cons job stopped)
new-output waiting-for-input #t))
(else (error "Unhandled signal" signal)))))
((status:term-sig status)
=> (lambda (signal)
(1p (delete job running) ready (cons job stopped)
new-output waiting-for-input #t)))))))
running))))))))

statistics-channel))

Figure 7. Excerpt from the implementation of a job list with asynchwoas status indication.

67

68

Ubiquitous Mail

Erick Gallesio

Universiié de Nice - Sophia Antipolis
930 route des Colles, BP 145, F-06903 Sophia
Antipolis, Cedex, France

Erick.Gallesio@essi.fr

ABSTRACT

Bimap is a tool for synchronizing IMAP servers. It enable® tw
or more IMAP mirrored servers to be modified independently
and later on, synchronized. Bimap is versatile so, in aolditd
synchronizing emails, it can be used for filtering and cfgB®j
emails. For the sake of the example, the paper shows automati
emails classification and white-listing programmed witmBp.

Bimap is implemented in Scheme. The most important parts of
its implementation are presented in this paper with theniitel
goal to demonstrate that Scheme is suited for programmaigta
that are usually devoted to scripting languages such asdrerl
Python. With additional libraries, Scheme enables compack
efficient implementation of this distributed networked kgation
because the main computations that require efficiency aeuesd
in compiled code and only the user configurations are exddnte
interpreted code.

1. Introduction

Low cost computers, ADSL, and wireless connections haveemad
ubiquitous computing a reality. Because the Internet is noail-
able nearly everywhere on the planet, most of us are nearly pe
manently connected. Many of us use various computers (maybe
one at home, one at work, and a roaming laptop). All these com-
puters ideally use the same synchronized data. Enforciagyin-
chronization is not always so easy. Hopefully, some dedéttiols
such as Unison [4] allow two replicas of a collection of filexa
directories to be stored on different hosts, modified sépgrand
then brought up to date by propagating the changes in eatibarep
to the other. However, as convenient as these tools are ol
directory synchronization, they are of little help when sidiering
email synchronization. In this paper, we address the spqmifib-
lem of synchronizing email.

Bimap is a tool for synchronizing email. It enables emailbé¢o
manipulated from different computers and localizationsis@r can
read, answer, and delete emails from various computers gshon
which some can be momentarily disconnected. Bimap autemati
cally propagates the changes to all these computers. Asrdemo
strated in this paper, synchronizing email is a simple wbbf
synchronizing lists. Functional languages are therefargliclates
of choice for implementing such algorithms. Bimap is impésted

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.

Copyright(© 2005 Erick Gallesio, Manuel Serrano.

69

Manuel Serrano

Inria Sophia Antipolis
2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France

http://www.inria.fr/mimosa/Manuel.Serrano

in one of them, namely Scheme, our favorite programming lan-
guage.

The rest of this paper is organized as follows. Section 2gntss
the Internet Message Access Protoedhich constitutes the foun-
dation of Bimap. Section 3 shows the limitations of IMAP ahd i
presents the general system architecture used by Bimatoisdc
presents the synchronization algorithm and its implentemtan
Scheme. Section 5 presemtkite-listing a filtering application im-
plemented with Bimap.

2. IMAP

The Internet Message Access Proto¢tMAP [1]) allows a client
to access and manipulate electronic email messages one.derv
permits manipulation of mailboxes (remote message fo)deyst
also provides the capability for an offline client to resyretize
with the server.

In contrast with other protocols such as test Office Proto-
col (POP3 [3]), IMAP includes operations for creating, delgtin
and renaming mailboxes, checking for new messages, penthane
removing messages, creating new ones, etc. Hence, IMAPds a p
fect match for our email synchronizer architecture. We hege-
mented a simple library that binds IMAP facilities in Schertés
briefly presented in this section.

Messages in IMAP are accessed by the use of numbers. These
numbers are either message sequence numbers or uniquie ident
fiers. ¢ From a programming point of view, the latter are muohem
convenient than the former. Message sequence numberea®Iv
emails are created of deleted. On the other hand, each enaat i
sociated with a unique identifying number (UID hencefotttgt
remains valid during an IMAP session. Note that while UIDs un
ambiguously refer to messages in a given session, N0 poovisi
made by IMAP to make UIDs pervasive, i.e., the UID associated
with an email may change from an IMAP session to another. elenc
it is difficult to implement a synchronization mechanismtthe:
lies on IMAP’s UIDs. As seen in Section 4 our synchronization
tool prefers to use the stamps allocated by the sendershhaR’s
UIDs. These stamps are extremely likely to be unique andan-pr
tice we have never found a collision.

Instead of tediously presenting all the functions comppsire
library, we present in Figure 1 a typical example that illagts
the most important functions. The example shows an inteect
session where a user logs in and browses some folders anks emai

Note that contrary to some other protocols, IMAP is stateful
The state of an IMAP connection describes the current dirgct
The commandmap-folder-select sets it to a new value.

In addition to the functions used in the example, the library
offers various functions for accessing the header eleméhés
attributes, and the body of the messages.

(define sock (make-ssl-client-socket "imap.nohwere.org" 993))
(imap-login sock "john doe" "eodjohn")

(imap-folders sock)
-> ("INBOX" "INBOX.-Unknown" "INBOX.foo" ...)

© BN L

(imap-folder-select sock "INBOX.foo")

10:
11: (imap-folder-uids sock)
12: -> (33612 32977 29895 29132 29018 28958 26938 26937 26129)
13:
14: (imap-message-info sock 33612)
15: -> ((message-id . <429F0564.9040400@fo0.com>)
16: (date . 02-Jun-2005 15:16:09 +0200)
17: (size . 6025) (flags \Seen) (uid . 33612))
18:
19: (imap-message-delete! sock 33612)
20:
21: (imap-folder-create! sock "INBOX.bar")
22:
23: (imap-message-create! sock "INBOX.bar" "subject: foo\n\nFoo is not bar")
24: -> 32739
25:
26: (imap-message-header sock 32739)
27: -> ’((subject . "foo"))
28:
29: (imap-message-body sock 32739)
30: -> "Foo is not bar"
31:
32: (imap-message-copy! sock 29132 sock "INBOX.bar")
33:
34: (imap-message-move! sock 32739 "INBOX.foo")
35:
36: (imap-logout sock)
Figure 1. An IMAP session in Scheme
3. The general architecture are synchronized which maintains a coherent global statte that

the emails on thencoming serverwhich is generally on a machine
which is not under our control, can be a subset of the emadls th
¢ are stored on our personal computers.

The Figure 2 illustrates a possible use of Bimap synchreniza
tion. For the sake of the example let's assume two serveeivrec
ing email providerl.eduand provider2.con. Both servers only
offer IMAP accounts. Let's also assume three machines used t
read email Classic DesktopandLaptop. Classicis not synchro-
nized. It remotely accessgwoviderl.eduand provider2.comvia
a direct IMAP connectionDesktopandLaptophave local folders
that are synchronized with the servers. These two machiesse
a set of folders which is the union of the emails located ortite
servers and the local folders. In addition to synchronifegktop
and Laptopwith providerl.eduand provider2.comBimap is also
in charge of synchronizingesktopandLaptoptogether in order to
ensure a correct synchronization of the email stored lp¢atid to
back them up on another machine too).

IMAP is a distributed platform that allows clients to accessail
servers. IMAP is a big step in the direction of ubiquitous #ma
because IMAP servers can be accessed by basically any cempu
connected to the Internet. In the first place, we have thotigtit
one IMAP server would be sufficient to satisfy our needs. We
have discovered that it is not. The difficulties are two fd¥irst

we occasionally happen to manage our email using discoedect
computers such as in-flight laptops. Even if some IMAP-cépab
email readers maintain a local copy of the emails and aretable
work offline, we are seeking a neutral architecture that duoms
impose a specific mail reader. Second, we also happen tosacces
our distant incoming IMAP server using Web email clientse3é
clients directly run on the computer hosting the server, ifgod

its state. This introduces a de-synchronization betweersénver

and the local state of a disconnected laptop.

Generally, IMAP providers enforce quotas and maximal sizes
for attachments. These IMAP servers do not provide enough re
sources for storing all emails. In consequence some emails h
to be moved in local folders (e.g., user file system). Thetlona
and the format used for these locally stored emails highpeded
on email readers. So, they are difficult to synchronize wihegal
synchronization tools. h h e

We came up with a solution that uses several IMAP servers: a 4. The synchronization
main server (oincoming serveérwhere the emails first arrive and In this section we present the synchronization algorithimst the
one local server per computer. All the email clients onlyessc principles are exposed. Then the specific parts of the spnita-
the IMAP server that runs locally. Any modification to an elmai tion are presented, as well as a sketchy presentation ofithelie-
(deletion, access, ...) is thus local. On a regular basthal$ervers mentation.

70

[providerl.edu N i provider?.com
imap imap
i INBOX i INBOX
i Scheme i : Farnily
g ———— Lisp Arnazon
; s € : €
E \ H J E h é‘ o
il E ; Y i : E b .
H : desktop . . H faptop . [
Y. """"T e rnailer 'Ylmap?_ mailer mailer
INBOX i INEOX INBOX INBOX INBOX1
Scheme Scherme Scheme Schermne Scheme
Lisp Lisp Lisp Lisp Lisp
SML i SML SML : SML SHL
Farnily Farnily Farnily Farnily IMBCX2
Amazon : Armazon Armazon Armazon Farnily
i Private i Private Private Armazon
ER—— ; ShesisssssseagERsssERsE
. g o . e z s Local Folders
E H Private
_}. IMAP connection
o Birmap synchronization

Figure 2. General architecture

4.1 The synchronization principles

The email synchronization relies on thESSAGE-ID header fields
[2]. Each of these fields contains a unique identifier whiderse
to oneversion ofoneemail. The uniqueness of the email identifier
is guaranteed by the host which generates it. The emailifaant
pertains to exactly one instantiation of a particular emailthe
synchronization process presented here, two emails asdsyad
equal (i.e., the same) if and only if th@fESSAGE-ID is the same.
MESSAGE-ID are not guaranteed to be globally unique hence
one could think to replace them with another identificaticecima-
nism. As exposed in Section 2, we have decided not to use IBIAP’

UID because they are not pervasive. Alternatively we could have
used a checksum mechanism applied to the entire email. This

would have had the nasty drawback of enlarged network tiiadfic
cause the whole email body would need to be transfered fatiide
fication. Using thelESSAGE-ID, only one field is transfered.

The process of synchronizing email consists in switchiognfr
one synchronization statsy(nc-staten short) to another. A sync-
state is an abstract notion. In Bimap, it is represented byna-s
table which is made of a list containing tNESSAGE-ID of the
emails that have been synchronized. When a new synchramizat
takes place between two servetsands2 with a sync-tabl&YNCT,
firstthe listsL1 andL2 of emails present if1 ands2 are computed.
Then the emails of.1 are compared tSYNCT. An email present
in L1 and absent irsYNCT is a new email that has to be copied
in L2 (and vice-versa). An email present $YNCT but absent in
eitherL1 or L2 is a deleted email. The implementation of this
synchronization is presented in figures 5 and 6.

71

For the sake of the example, here is an example of a sync-table

(("INBOX"
("<OFBFO4EB.82F939-0125705FC@us.ibm.com>" ((\Seen)))
("<1000.4779.9924@gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.17080gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658. j71GTF0022290sea. inria.fr>" ((\Seen)))))

The sync-table is an association list whoser is a folder
name ('INBOX" in this example) and thedr is the list of syn-
chronized messages. For each synchronized message, indteeta
MESSAGE-ID as well as the list of its IMAP flags. Usage of sync-
tables is explained in Section 4.5.

The synchronization only deletes emails that are presettiein
sync-table. So, if for any reason, such as network failuties,
sync-tables are lost, the synchronization algorithm véBurrect
emails deleted on only one server but it will never erronous
delete emails. When a message is copied from a s&véo a
servers2, it preserves it¥ESSAGE-ID. Hence, if sync-tables are
missing, the synchronization will not erroneously dupicamails.
Consequently, Bimap synchronization is conservative.

4.2 The synchronization state

Instead of being implemented as files in the user file space;-sy
tables are stored in the IMAP servers they describe. Hersegsu
cannot easily modify sync-tables which are private to Binips
ensures the coherence of the sync-tables with respect sethers
they describe. In addition, this technique also avoidgeting user

home space with various private files. Since IMAP servery onl
contains emails, a sync table is implemented as an emaiteSin
only folders can be named in IMAP, the sync-table is storeithas
single message of a well-known folder.

Here is the complete implementation of the sync-table shiown
Section 4.1:

Subject: bimap Tue Aug 23 06:27:37 2005

(("INBOX"

("<OFBFO4EB. 82F939-0125705FQus . ibm.com>" ((\Seen)))
("<1000.4779.99240gardenia.artisan.com>" ((\Seen)))
("<169.62.5348.17080gardenia.artisan.com>" ((\Seen)))
("<11280737.6750.7.camel@localhost.localdomain>" ())
("<2508011658. j71GTF002229@sea.inria.fr>" ((\Seen)))))

When synchronizing serverst and S2 which are both refer-
enced by a socket, the name of this foldersanis the name of
82 concatenated with the user login name i The function
sync-folder-name implements this naming:

(define (sync-folder-name sl1 s2)
(let ((n (string-replace
(socket-hostname s1)
(string-ref (imap-separator s2) 0)
#\-)))
(string-append (bimap-folder-name)
(imap-separator s2)
n "+" (socket-login s1))))

Some special attention has been paid to produce a legal rame f
the folder name. Since IMAP servers reserve one charactérqr
"/") as a folder separator, this character cannot be used iarfold
names. The functioimap-separator returns the character used
on the server. The functicterver-sync-table-folder-select
goes into the folder af1 containing the sync-table g.

(define (server-sync-table-folder-select sl s2)
(let ((f (sync-folder-name s2 s1)))
(and (folder-exists? sl f)
(and (= (folder-length s1 f) 1)
(imap-folder-select s1 £)))))

The functionserver-sync-table-get reads eitheis1's sync-
table fors2 or S2's sync-table fois1 if the former is absent.

(define (server-sync-table-get s1 s2)
(cond
((server-sync-table-folder-select
(with-input-from-string
(imap-message-body
sl (car (imap-folder-uids
read))
((server-sync-table-folder-select
(with-input-from-string
(imap-message-body
s2 (car (imap-folder-uids
read))
(else

>(0)))

The default case okerver-sync-table-get iS to return an
empty sync-table. Remember from Section 4.1 that the dlgori
is conservative. That is, if it happens that the sync-tablest on
both servers, the synchronization algorithm will resurremails
deleted on only one server but in no case will it erroneouslgte
emails.

sl s2)

s1)))

s2 s1)

s2)))

4.3 Synchronizing servers

The synchronization of two IMAP servegd andsz2 is parameter-
ized byfolders, a list of folders to be synchronized. The function
synchronize-servers!, presented in Figure 3, scans all the fold-

72

ers in the list. For each folder it checks if the folder is ndaleted,
or to be synchronized in each server. This function updateaew
sync-table in order to reflect the synchronizations that face.

When all folders are synchronized, the new sync-table igdto
on both servers. The functioaserver-sync-table-store! ac-
cepts three parameters: the socketainds2 accessing the servers
and the new sync-tablesync. It computes the name of the folder
where the sync-table on both servers (sgec-folder-name in
Section 4.2) is to be stored.

When a foldefF is missing on one server, it has to be determined
first if F is a freshly created folder or an older one which has
been deleted. In order to simplify the understanding of theee
code, contrary to the actual implementation, we have dafdit
the cases where a folder is either absensoror S2. The code,
here duplicated, can easily be merged into a single funciibe
functionnew-folder? answers this question. A folder is new if at
least one of the following conditions is met:

e Itis not present in the sync-table (see Figure 4, 8pe

e |t contains sub-folders. Since, synchronization first &isestib-
folders, if F is old, all its sub-folders would have been previ-
ously deleted (lind).

¢ In order to enforce conservativeness, a folder containig n
emails (i.e., at least one non-synchronized email) is atsb ¢
sidered new (lin&).

4.4 Synchronizing folders

When a folder is present in both servers (Figure 3, B8g each
email in this folder is inspected byynchronize-folders! de-
fined Figure 5.

The functionsync-table-folders-find, whose code is not
given here, retrieves the information available in the staiie
about the foldeF. That is, it searches the association list presented
in Section 4.1. A hash table is built (lin® for improving the
performance of the algorithm. It enables fast access toythe-s
table.

4.5 Synchronizing messages

The last step of the algorithm is the synchronization of amiem
The functionsynchronize-message! synchronizes a message
localized in the foldeF on servers1 according to the sync-table
synct. In addition to copying and deleting emails, this function
also propagates théagsthat are associated with emails. As spec-
ified by IMAP these flags denote meta-informations about Emai
such asan email is readan email is answered.. While not ab-
solutely required, synchronizing flags is important. Itleea co-
herent views of the email on all servers. In order to syncizen
flags, Bimap stores the flags of synchronized emails in the-syn
tables. That is, for each synchronized email, the synetdbhotes
its flags on the servers at the moment of the last synchraoizat
The functionhashtable-message-flags returns the flags stored
in the sync-table for a given email. It returns either the disthe
email flags on#f if it is out of synchronization. In the seldom sit-
uation where two servers have separately modified the flagaeof
email, Bimap randomly selects one server for synchronifams,
loosing the modifications applied on the other server.

5. Filtering and classifying emails

Email has escaped the professional IT sphere. One now etoails
colleagues as he does to relatives. Electronic merchaigdéso
generates emails. Electronic billing and confirmation nerslare
frequently sent by email. Many administrative proceduias @lso
be completed with the Web and email. All in all this represemt
huge number of emails that are sent (and also received) degry

(define (synchronize-servers! sl s2 folders)
(let ((sync (server-sync-table-get si s2))
(foldersl (imap-folders s1))
(folders2 (imap-folders s2)))
(let loop ((folders folders)
(nsync ’()))
(cond
((null? folders)
(server-sync-table-store! sl s2 nsync))
((not (memq (car folders) foldersl))

(let ((f (car folders)))
(if (new-folder? sync s2 f)
(begin
(imap-folder-create! si f)
(let ((s (synchronize-folders! sync sl s2 £)))
(loop (cdr folders) (cons s nsync))))

L O L L L S S S U N Y
CIIPOH WD O0RNIRNOH WD

(begin

(imap-folder-delete! s2 f)
20: (loop (cdr folders) mnsync)))))
21: ((not (memq (car folders) folders2))
22:
23: oY)
24: (else
25:
26: (let* ((f (car folders))
27: (s (synchronize-folders! sync sl s2 f)))
28: (loop (cdr folders) (cons s nsync))))))))

Figure 3. Server synchronization implementation

1: (define (new-folder? sync s f)
2: (let ((dsync (sync-table-folders-find sync f)))
3: (or (not dsync)
4: (pair? (imap-subfolders s f))
5: (any? (lambda (i) (not (assoc (message-id i) dsync)))
6: (begin
7: (imap-folder-select s f)
8: (map imap-message-infos (imap-folder-uids s)))))))

Figure 4. Is a folder new?

(define (synchronize-folders! sync sl s2 f)

1:

2:

3: (imap-folder-select s1 f)

4: (imap-folder-select s2 f)

5: (letx ((11 (map imap-message-infos (imap-folder-uids s1)))
6 (12 (map imap-message-infos (imap-folder-uids s2)))
7 (fsync (or (sync-table-folders-find sync f) ’()))
8: (synct (sync->hashtable fsync)))
9:

10: (for-each (lambda (m1)

11: (let ((m2 (find-mid (message-id mi1) 12)))

12: (synchronize-message! synct f ml sl m2 s2)))
13: 11)

14: (for-each (lambda (m2)

15: (let ((m1 (find-mid (message-id m2) 11)))

16: (synchronize-message! synct f m2 s2 ml s1)))
17: 12)

18:

19: (let ((fsyncn (hashtable-map synct list)))

20: (cons f fsyncn))))

Figure 5. Folder synchronization implementation

73

1: (define (synchronize-message! synct f ml sl m2 s2)

2: (let* ((mid (message-id ml))

3: (uidl (message-uid m1))

4: (flagsl (message-flags ml1))

5: (flags (hashtable-message-flags synct mid)))
6:

7:

8: (cond

9: ((and (not flags) m2)

10:

11:

12: (let ((flags2 (message-flags m2))

13: (uid2 (message-uid m2)))

14: (imap-message-flags-change! s2 uid2 flagsl)
15: (hashtable-put! synct mid (list flags1))))
16: ((not flags)

17:

18: (imap-message-copy! sl uidl s2 f)

19: (hashtable-put! synct mid (list flags1)))
20: ((not m2)
21:
22: (imap-message-delete! sl uidl)
23: (hashtable-remove! synct mid))
24: (else
25:
26:
27: (synchronize-message-flags! sync ml m2 sl s2)))))

Figure 6. Message synchronization implementation

Those of us that are used to communicate via the Internetoare s
overwhelmed by emails that tools are needed for readingrifit,

and classifying emails. In addition to synchronizing emBimap

can easily be adapted to these tasks, in the spirit of toals as
procmail.

Variables declared via the macr@efine-parameter are
calledBimap parametersThe puspose adefine-parameter is
threefold: it declares a variable, a function named afterqthram-
eter that returns the value of the variable, and a functiahgtores

a new value in the variable. Here is an example of a parameter .

declaration and use:

(define-parameter bimap-verbose 0)

(for-each (lambda (o)
(if (string=? o "-v"
(bimap-verbose-set!
(+ 1 (bimap-verbose)))))
(command-line-arguments))

When started, Bimap loads a user configuration file that speci
fies which IMAP servers and folders have to be synchronizbis T
file can also contain various definitions that are used forilariaes-
sification and email filtering. Instead of inventing a newlditan-
guage for implementing these customizations, Scheme auguohe
with the IMAP binding library is used. In consequence, a Birag-
ecution uses compiled Scheme code for running the synctaoni
tion algorithm and interpreted Scheme code for running ter u
configuration code. This blending of compilation and intetation
enables high expressiveness without jeopardizing peenoe.

5.1 Classifying emails

Bimap can be adapted to enable automatic folder selectiigty
modifying Bimap enables user customizations that autaralhyi
deliver incoming emails into dedicated folders. For ins@mone
may choose to archive emails emitted for a mailing list inealiel
cated folders or another user may choose to split profeakenail
from personal email. This customization is specified in tlee/n

74

Bimap parametehimap-folder-rewrite. The value of this pa-
rameter is a procedure that accept four parameters: theectbon
to the IMAP server, the folder in which the email is currerstigred,
the message info, and its header fields.

Email classification takes place when a new email is detected
on only one of two servers. Instead of copying the new email in
the folder of synchronization (lin&8, Figure 6) it is copied into a
folder whose name is computed bymap-folder-rewrite. That
is, line 18is replaced with:

(let* ((hdl (mail-header->1list

19: (imap-message-header s1 uidl)))
20: (fdest ((bimap-folder-rewrite) s2 £2 ml hd1l)))
21 (imap-message-copy! sl uid2 s2 fdest))

The new email is copied in tHeDEST directory (which defaults
to F2). No other treatment is needed. Since this email is marked as
synchronized as any other email, the next time the two sever
synchronized, the message will be movedinfrom folderF1 to
Fdest.

The following user configuration example illustrates how th
parameterimap-folder-rewrite is used to store the emails
sent to a mailing list into a dedicated folder.

(let ((old-rewrite (bimap-folder-rewrite)))
(bimap-folder-rewrite-set!
(lambda (sock folder msg header)
(let ((to (message-header-field header "to")))
(if (equal? to "bigloo@sophia.inria.fr")
"Bigloo"
(old-rewrite sock folder msg header))))))

The email classification requires no extra synchronizéatiest-
ment. That is, no provision is taken to ensure the synchaioiz
of an emaile that is stored into a re-written foldét¥. The next
time a synchronization takes place, if the foldewon the list of
synchronized folders, the messagsill be automatically synchro-
nized too. This framework require no implementation effart it
introduces a delay in synchronization. It takes two seryackro-

nizations to correctly classify such an email and propatetelas-
sification to the servers.

5.2 Surviving Spam
Spam email is a plague. They clutter our mailboxes, thréagen

according to the Emacs’ Big Brother Data Base format [5]c8in
this code takes place in the user configuration file, it candséye
adapted to satisfy everyone’s needs.

(define *white* (load-bbdb "~/.bbdb"))

email usefulness. Spams are more and more numerous. ThéeGoog (define (unknown-mail? header)

Gmail accounts of the authors of this paper are clutteredh wit

approximatively 3000 to 6000 spam emails per month. That is,

(not (hashtable-get
*whitex (header-field ’from header))))

between 100 and 200 spam emails are received each day! The 20

to 30 legitimate emails that are received are literally losthis
ocean of ineptitude. Spam emails are terribly annoying lsza
they are cumbersome, distracting, and polluting. So, itdegular
challenge to stop spams. Many research labs have startgttsro
on this topic. Anti-SPAM software is widely available. Thedb

of these systems do an impressively good job at stopping Spam

They use more and more clever methods to decide, according to

its content, if an email is spam or not. Bayesian filtering e o

(let ((old-filter (bimap-filter)))
(bimap-filter-set!
(lambda (sock folder msg header)
(if (unknown-mail? header)
(imap-message-move! sock msg "INBOX.-Unknown")
(old-filter sock folder msg header)))))

of them. Unfortunately, as good as these systems are, as with6. Summary and Conclusion

anti-viruses software, they are bound by their very natoréd
late on spam: anti-spam filters cannot anticipate new spagmmi
techniques. Even more pessimistically, we think that aurbased
filtering is a partial solution that could only produce middi
results. What can be reasonably expected from such filteesmwh
applied to emails like:

.0000.0 .00000. 0000 000 00.00000.

d88("8 d88’ ‘88b ‘88b..8P’ 888’ ‘88b
‘"Y88b. 888000888 Y888’ 888 888
o.)88b 888 .0 .08"’88b 888 888
8""888P’ ‘Y8bod8P’ 088’ 8880 888bod8P’
888
08880

We have presented Bimap, a tool for synchronizing IMAP satve
We have shown that with very few modifications to the synchro-
nization algorithm, Bimap is also able to filter and classfyail.

As such, Bimap could be a potential replacementpgoscmail.
This is highly convenient because it enables email filterintn
simple small Scheme scripts. Two such scripts have beeanezs
one for classifying emails that belong to mailing lists arskaond
one for implementing white-listing. Each of these scriptsé more
that a few lines of Scheme code.

In order to ease the reading of the present paper, a sim-
plified version of the synchronization algorithm has beea- pr
sented. Contrary to the code presented here, the actuae-mpl
mentation supports folder re-writing. That is, it enablgachro-
nizing folderF1 of servers1 with folder F2 of servers2 with-
out imposing name equality betwe&n and F2. This is conve-

Spammers can use other techniques for obfuscating emails. Anient for managing different IMAP accounts intended forfetif

lot of them attempt to fool Bayesian filters by introducingane
ingless texts. This ranges from c*h*a*n*g*i*n*g the spadeacac-
ter to replacing letters with numb8rs and nOnsense 4ccengs.
sumably the most intriguing fooling technique swaps théetst
composing the words. Aoccdrnig to rscheearch at Cmabrigde u
ervtisy, it deosn’'t mttaer waht oredr the ltteers in a wroe, dhe
olny iprmoetnt tihng is taht the frist and Isat Itteres ar¢hatrghit
pclae. The rset can be a tatol mses and you can sitll raed ttvtou
a porbelm. Tihs is bcuseae we do not raed ervey lteter by figte
the wrod as a whole.

Content-based filtering is not good enough, it lets too much
spams entering our mailboxes. To work around this problee, w
have coupled content-based filtering with a more drasticcgmh:
white-listing. This well known technique consists of adieg in-
coming emails only from authenticated users. We are usirgrya v
straightforward technique. We save all the email addressiofor-
respondents into in a big database which compose our wikite-|
When a new email goes through the content-based filter, thressl
of the email sender is checked against the white list. If greder
is unknown, the email is moved into a special folder. Othsewit
is directly delivered to the regular mail box folder. Thisheique
is extremely effective. In our personal setting, whiteitig suc-
ceeds in detecting 99.9% of spam and only a few legitimatélema
go into the spam-dedicated folder. A vast majority of legiie
emails are correctly handled and are no longer lost in a faks

ent purposes. This incurs a small additional implementatmm-
plexity, such as an indexing with two folders name in the sync
table (so the functiongsew-folder?, synchronize-folders!,
synchronize-message!, and sync-table-folders-find no
longer take only one folder name as parameter but two), kit th
main principles of the implementation stay the sames.

We are now permanently using Bimap for our own email. We
have found that email classification and white listing cedplvith
Bayesian filtering (that only runs on our incoming email seyv
is highly effective to filter out nearly all illegitimate entea With-
out pretending to have rediscovered the pleasure and mamitisof
answering our first 80’s emails, we claim that Bimap signifita
reduces the modern burden of coping with email. We are naelong
disturbed by irrelevant emails arriving continuously inr anail-
boxes. This makes our professional life significantly Hicer

Bimap is not yet the perfect tool. It still needs improvement
In particular, IMAP does not support locking. This is quitefar-
tunate, because lacking locks makes it impossible to ptesien
uations where two servers simultaneously attempt to symire
against a shared third server. In such a situation, inctamsi®s
might occur in the IMAP responses that cause Bimap to fail. As
stated in Section 4.1 this is not critical because the onlysee
guence of corrupted sync-tables is emails resurrectionolnase
could it lead to erroneous email deletion.

Bimap is a realistic, yet simple, application written in Sote.

spam. The dedicated folder of unknown senders can be checkedt benefits from the expressiveness of this language and; mer

once in a while when time permits.

Implementing white-listing exercises email pre-filteriag de-
scribed above. White-listing is trivial to implement besaudt only
requires a hash table. In the following we assume that thelema
addresses are stored in the local filé.bbdb and are organized

75

portantly, it uses a feature that is frequently availabl®&éheme im-
plementations: the blending of compiled and interpretegjams.
For efficiency, the tree comparisons are compiled. For lisaand
convenience the user scripts are interpreted. Few othguéayes
present these capabilities.

[1] Crispin, M. —Internet Message Access Protocet RFC 3501, The
Internet Society, 2003.

[2] Crocker, D. —Standard for the format of ARPA Internet text
messages- RFC 822, Dept. of Electrical Engineering, University of
Delaware, 1982.

[3] Myers, J. and Rose, M. Post Office Protocol - Version 3- RFC
1939, Carnegie Mellon and Dover Beach Consulting, Inc.5199

[4] Pierce, B. and Vouillon, J. What's in Unison? A Formal
Specification and Reference Implementation of a File
Synchronizer— MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[5] Zawinski, J. =The Insidious Big Brother Database— 20th century.

76

Implementing a Bibliography Processor in Scheme

Jean-Michel Hufflen

LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANCON CEDEX

FRANCE

hufflen@lifc.univ-fcomte.fr

Abstract

We report an experience of implementing the MIB=X bibliogra-

phy processor, a re-implementation aBE=X with particular fo-

cus on multilingual features. First we describe the behawbthis
software and explain why we chose Scheme to implement the firs
public version. Then we give the broad outlines of our impem
tation and show how we took as much advantage as possible of th
main features of Scheme. We also explain what we really misse
and suggest some ways to improve these points.

Keywords MIBIBTEX, bibliography processor, medium-sized pro-
gramming in Scheme.

1. Introduction

This article reports an experience of implementing medgirad
software in Scheme. The ‘philosophy’ related to the debnitdf

this programming language is that ‘a very small number o$idja
rules [...] suffice to form a practical and efficient programgn
language, as mentioned at the introduction of the currevision

of Scheme [24]. So this article is an attempt to show how sarféw
can be developed using ‘a very small number of basic rules/-A
way, we do not regret to have developed our software in Scheme
but have some criticisms: we think they are constructive.

The program we have written using Scheme Hsildiography
processor More precisely, this is a re-implementation oBB=X
[36], the bibliography processor associated with #igX word
processor [29]. Reading this paper does not require pré&nisel-
edge of ATEX and BBTEX, but we provide a brief introduction in
order to make our purpose more preci$gX is not an interactive
word processor: first, users typsaurce file then ETgX processess
this source file and produces an output file that can be disglap
a screen or printed on a laser print&fgX, which uses X as type-
set engin&[28], produces high-quality print outputs. In particular,
itis able to hyphenate words correctly [28, App. H].

1TEX, defined by Donald E. Knuth [28], provides a general framewio
format texts. To be fit for use, the definitions of this framekwoeed to be
organised in &rmat There are several formats, the most well-known being
[ATEX.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Jean-Michel Hufflen.

77

Items of the bibliographical information cited throughaan
article typeset withAIEX can be denoted by an identifier, e.g.:

\cite{ziemianski2002a}

[33, § 12.2.1]—from a syntactic point of viewiTEX commands
begin with "\’ and braces are used to surround arguments—and
when BBTEX is used to build the ‘References’ section of the article,
it searchedibliography filescontainingentries e.g.:

Q@INPROCEEDINGS{ziemianski2002a,
.

[33, § 13.2] and generates a file containing bibliographieter-
encescited throughout the article. WheATEX runs again, such
references are typeset and appear as part of this article.

IATEX's recent versions have greatly improved multilingual ca-
pabilities. For example, the command for specifying thehm@gg
of a chapter and its title is:

\chapter{...}

[33, § 2.2] and the keyword put b§TEX defaults to the English
one, i.e., ‘Chapter,’ but can b€hapitre (resp. ‘Kapitel, ...) fora
book written in French (resp. German, .. .) In additiéfigK is able

to switch to accurate patterns for hyphenating non-Englistds.
Thebabel packag@ [33, Ch. 9] provides multilungal operations for
IATEX. Other packages do that, too, but the most multilingual one
is babel, in the sense that this package processes all the natural
languages it knows, without giving any privilege to a partc
one. Therefore this package is especially suitable formgizseveral
languages within the same document. For example, if we want
to write an article in Polish with some fragments in Germae, w
declare:

\usepackage [german,polish] {babel}

the last option—here polish’—gives the default language of the
document. If we want to write ‘Bus to Poznan,’ the words ‘bois t
being translated in German, we can use \fiereignlanguage
command of théabel package:

\foreignlanguage{german}{Autobus nach} Pozna\’{n}

Besides, AIEX is able to deal with ‘foreign’ characters, that is,
accented letters (e.g.nh") and other diacritics, but in this paper,
we do not go thoroughly into that, we just us&X commands to
produce such characters.

2W.r.t. IATEX's terminology, apackageis a collection of commands. Some-
thing belonging to the Isp world and close to this notion is the system of
modulesn CoOMMON LISP, controlled by thexmodules* variable and the
functionsprovide andrequire [47, § 11.8].

However, BBTEX's present version does not provide as many
multilingual features asATgX's, even if the insertion of some
multilingual aspects has been put into action [33, pp. 733—7
& § 13.5.2]. In fact, the commands of theabel package can
be used within the values of IBIEX fields—as we showed in
the previous example—andiEX will copy these values onto
the files it generates. However, this method seems to us to be
bad, because users of such bibliographical entries haveaid |
the babel package with all the accurate options in any document.
This package operates statically, that is, all the langsiggssi-
bly used throughout a document must be declared as options of
the usepackage command, located at the beginning of the docu-
ment. In other words, using languages that are not selectet w

Q@INPROCEEDINGS{ziemianski2002a,
AUTHOR = {Andrzej Ziemianskil,
TITLE = {[Autobahn nach] : german {Poznan}},
BOOKTITLE = {Zajdel 2002},
EDITION = 1,
PAGES = {165--238},
PUBLISHER = {Fabryka Stow},
ADDRESS = {Lublin},
NOTE = {[No English translation] ! english},
YEAR = 2002,
LANGUAGE = polish}

Figure 1. Example of MIBBTEX entry.

the babel package is loaded causes errors. That may be the case

if files of bibliographical references use such languagaetitlers,

put down in the bibliography data bases. In addition, usimchs
IATEX command in bibliography data bases is just a hack and obvi-
ously obstructs the generation of bibliographies for otifptmats
other than4IgX. Given these considerations, we started a new im-
plementation, called MIBTEX (for * MultiLingual BBTEX). We
roughly describe the behaviour of this program in Sectiom@ a
explain why we have developed it in Scheme. Section 3 present
MIBIBTEX's architecture and gives the guidelines of its develop-
ment. Section 4 reviews what we enjoyed in Scheme and what we
missed.

2. MIBIBTEX
2.1 Purpose

We sketched BTEX's behaviour in the introduction. Now we ex-
plain why MIBIBTEX can be viewed as a ‘better®BIpX,’ especially
for multilingual features.

Let us consider the entry given in Figure 1, concerning a ieve
included in an anthology. This novella, written in Polishebiolish
writer, is entitled Autobus nach Pozndrlet us remark that two
words of this title belong to the German language. If thisellav
is cited in an article written in Polish, the correspondiafgrence
should look like:

[1] Andrzej Ziemiaski, Autobus nach Poznafw:] Zajdel
2002 Fabryka stéw; Lublin 2002; strony 165-238.

as an item belonging to @hebibliography environment [33,

§ 12.1.2]. Aplain bibliography style is used above, that is, items
are labelled by numbers, and first names are not abbrev{@#uer
styles exist—for example, withialphastyles, the label of an item
is formed from the author’'s name and the year of publication—
various examples are given in [33, Table 13.4].) Besidesidee-
call that this reference is supposed to be put at the end ota-do
ment written in Polish. Let us have a look at the same referenc
but within the bibliography of a document in English and shrayv
the items of this bibliography according to English-spagkton-
ventions as far as possible:

[1] Andrzej Ziemiaski. Autobus nach Pozhaln Zajdel
2002 pp. 165-238, Lublin, 2002. Fabryka stéw. No
English translation.

That is, {W:]" is replaced by ‘In,’ strony by ‘pp.’ for ‘pages.’ It

is given before its name in an English-speaking bibliogyajlfr

ter it in a Polish-speaking one. Second, the value assdcigith

the NOTE field (see Figure 1), the["...] ! english’ notation
means that the string surrounded by square brackets is pyt on
if the language of the reference inglish.’ Users could build an
entry for a document, usable when the reference is to be phirwi
an English-speaking bibliography, another entry for theeaoc-
ument, but usable within a French-speaking bibliography, so
on. As a consequence, the information common to these gntrie
would be duplicated. The[...] ! ...’ construct avoids such a
behaviour; more technical details about such switchesiaes gn
[18,§2.3].

To show some difficulty related to the generation of mulglial
bibliographies, let us go back to the Polish version of oference
and recall that the title of theemianski2002a entry uses some
German words, which are expressed by tfie..] : german’
notation. To ensure that these words will be properly hyphesh
if need be, we can generate the following téxt:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{\foreignlanguage{german}{Autobus
nach} {Pozna\’{n}}}. \bblin\ \emph{Zajdel 2002}.
\newblock Fabryka s{\1}\’{o}w; Lublin 2002;
\bblpp\ 165--238.

provided that the document uses thebel package, with at least
thegerman option. This document’s author may think that he does
not need to write in German even if a work using German words
in its title is cited. In such a case—thgerman option has not
been selected—MIBTEX does not put the\foreignlanguage
command:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock Autobus nach {Pozna\’{n}} ...

but some words might be hyphenated incorrectly. Besides, th
babel package is not the only way to write texts in Polish: there
exists apolski package [4, § F.7], in which case other commands
should be used. More precisely, here is the text that wilseahe
‘foreign’ (non-Polish) words to be hyphenated correctlyanthis
package is loaded:

\bibitem{zemianski2002}Andrzej Ziemia\’{n}ski,
\newblock \emph{{\selecthyphenation{german}Autobus
nach} {Pozna\’{n}}} ...

These examples aim to give some idea about the complexity

is easy to see that such simple cases can be processed by meang Mg sT=X’s task. The management of the language specifica-

of substitutionsthat is, by means ofTgX commands for gener-
ating keywords—bblin, \bblpp, ...—whose effect is language-
dependent—ih’ and ‘pp. in English. Other cases are subtler. First,
the order is not the same: for example, the address of théspebl

SWirt. MIBIBTEX's terminology, such a convention is callebcument-
dependent approadis8, § 4].

78

tions LANGUAGE field, ‘[...]1 ...") and multilingual packages
is explained in more detail in [21]. Of course, such probleres

4Notice the use of the commandsblin and \bblpp for the keywords
used in bibliographies. We show how to manage them in [20§ \inph
command is for texts to be emphasised, thewblock command is used
by some document styles [33, Table 7.2, § 12.2.1].

unknown for ‘old’ BIBTEX. As shown in Figure 1, MIBBTEX'S
syntax extends BTEX's. Square brackets are syntatic markers in
MIBIBTEX, ‘normal’ characters in ‘classical’ BTEX. Likewise, the
LANGUAGE field, specifying the language of an entry for MEBEX,

is ignored by BBTEX since unused fields are ignored.

2.2 Requirements

hard to maintain. As we explained in [17], we decided to gét ri
of the language used byBIEX for bibliography styles [35]: that
is an old-fashioned language, non-modular and only basédon
dling a stack, as it can be seen in [33, § 13.6]. As abovemeedica
compatibility mode exists [16], but the best way for devéhggbib-
liography styles is given by a new language, caliést, for ‘new
bibliographystyles’, close toxsLT [52], the language of transfor-

. . H 8
When ETEX processes a document, it produces an output file and Mmations forxmL® documents.

puts the information about bibliographical citations inaaxiliary
file. For example, processing thecite{zemianski2002a}’ ci-
tation will cause the\citation{zemianski2002a}’ string to be
put into an auxiliary file. This file should contain the speawifion
of the bibliography style to be used: e.g\bibstyle{plain}’ for
the ‘plain’ bibliography style. In fact, these auxiliaryefd are not

TeX source files in the sense that they do not contain texts to be

typeset, but the tokens these files use are the same fromacsgnt
point of view (cf. [33, § 12.1.3] for more details). Here is aths
to be done by MIBBTEX:

(i) look into an auxiliary file for the keys cited throughoutiac-
ument and the bibliography style to be used for this document

(ii) search bibliography files for corresponding entries;

(i) look into the beginning of the source file in order to get
information about the multilingual packages used and try to
determine the document’s languate;

(iv) sort them (the sort used depends on the bibliograpHg 8pyt
may also depends on the document’s language);

(v) arrange them according to the bibliography style chosen

Tasks (i) and (iii) require agX parser, whereas Task (ii) requires a
parser of bibliography files. (Because of the compatibitityde for
‘old’ bibliography styles of BBTEX [16], another parser is required
for such files, written using thiest language [35].) The directives
for Tasks (iv) and (v) are put in bibliography style files. Véeshat
such a bibliography processor has to manage several famsli

2.3 Anbit of story

When we designed and implemented MiB=X’s first version [13],
we decided to develop it in C [25], for sake of efficiency and
portability. In fact, we confess that we were surprised wigk
had been reimplemented as a new systérs’ [43], programmed
in Java [23]: it resulted in a program over 100 times slower than
TeX [48]. We also were trying to propose an alternative for a
program with good reputation of efficiency. We put into act#
precise modular decomposition and a precise terminologgioe
our functions and variables for this first version [14], song<C to
develop a program supported by precise methodology seemed t
to be good compromise between efficiency and maintaingbilit
This first version—we reported the experience we got in [14]—
was able to deal with substitutions, that is, commands sisch a
\bblin and\bblpp (cf. § 2.1). It was also able to process con-
structs such as[...] ..>and ‘[...1 ' ...] But when

it was ready for use and when we were arranging the interface

files—the different values to give to th&bbl. ..’ commands—
we became aware that this prototype was not multilingualigho
As an example, putting the different field values concerrting
zemianski2002a entry in the right order for documents in English
and Polish would have led to complicated bibliography stylery

SBIBTEX does not need this step, but MEFEX does.

6 For example, thainsrt bibliography style of BBTEX leaves the entries
unsorted: they are put according to the order of appeararnitenvthe
document.

7 New TypesettingSystem.

79

2.4 Thenbst language

Within this new framework, parsing a bibliographical erfirym a
.bib file results in arxmL tree, that is, theemianski2002a entry
given in Figure 1 can be viewed as theL tree:

<inproceedings id="zemianski2002a"
language="polish">
<author>...</author>
<title>...</title>

</inproceedings>

Processing such a tree can be done this way by usiemplateof
thenbst language:

<nbst:template match="inproceedings">
<!-- Putting the reference’s label, text omitted. -->
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"/>

</nbst:template>

Such a template is similar to those used 817, it is invoked when
the entry we are processing is rooted by th@roceedings ele-
ment. The twanbst : apply-templates elements we mentioned
in that sketch aim to look for templates matching #wehor and
title elements respectively: if such templates exist, they are in
voked. The main difference betwegsLT andnbst: in the latter, a
template can be refined for a particular language:

<nbst:template match="inproceedings"
language="polish">

<nbst:apply-templates select="title"/>

</nbst:template>

a template with thaanguage attribute having higher priority than
a template without. So this template is invoked when we ape pr
cessing aninproceedings element for a Polish-speaking bibli-
ography, whereas the template withdunguage attribute is in-
voked in order to formainproceedings elements for bibliogra-
phies written in languages other than Polish (more pregiselan-
guages other than those put in all thenguage attributes of the
templates matchindnproceedings elements). This kind of in-
heritance is applied whenever we are looking for a templete.
example, let us consider the following statement:

<nbst:apply-templates select="title"/>

When itis run, we are looking for a template whase ch attribute

is title. First, we are looking for a template whosenguage
attribute is associated with the current language. In qa&r, if
this apply-templates statement is run from the template with
thelanguage attribute associated witpp1ish, we are looking for
a template withLanguage="polish". If such a template exists,
it is invoked. If not, a template matching.tle elements without

8Reading this article does not require advanced knowledgetatmL .
Readers interested in this metalanguage can refer to [38].

language attribute—that is, a default template—is invoked. Such <title>

organisation allows us to build several variants, for Esigliand <asitis>
Polish-speaking bibliographies, as shown in § 2.1. Moran&al <emph emf="no" scf="yes">la</emph>
details are given in [18]. </asitis>
Like in xsLT, the values ohatch attributes belong to the XPath Confidential
language, used to address parts okan. document [51]. In fact, </title>

our expressions selecting parts of a bibliographical iteenvery
close to XPath'’s expressions, but we added some functioropfo
erations difficult to perform with the functions provided the first
version of XPath (1.0, the normative document being [51gy.6x-
ample, using the functions provided by standard XPath tdalége TITLE = {{\logo{la}} Confidential}

some words in a title is tedious. In addition, multilinguaafures

require some information included ieX source files (cf. § 2.2), ~ where\logo is a user-defined command meaning that its its argu-
and are implemented by means of calling external functisesyo ment is an acronym. Such a command may be defined as follows
thoroughly into this choice in [21]. Obviously, it is preéale for [33,8A.1.2]:

such external functions to be written in a high-level prognsing

language, more precisely, in a language that should easetiope \newcommand{\logo} [1] {\textsc{#1}}
on strings. Such a criterium puts C at a disadvantage: ptersiyc- that is, the\logo command has the same effect than thextsc
cessful text-processing packages have been written in Cthbu command, but it is more readable about its meaning and can be
memory management is explicit, such operations like camzat redefined if users wish to change the display of acronyms.

tion require functions whose use is far from obvious. We cann This example shows that if end-users have put séiXIcom-
require a bibliography style designer to be an experienged p mands inside values ofiBTX fields and wish to use MIBTEX to
grammer in C. So, as we report in [19], we decided to develop output files according to other formats thamgX, they should be
MIBIBTEXs first public version (1.3) using Scheme. In particular, able to specify how their commands have to be processed viben b

since the\textsc command is predefined iATEX. The problem
is more complicated if end-users put commands they haveeatkefin
themselves, e.g.:

this choice allowed us to use the representatiosyofiL [27] as a liography files are parsed and transformed wa. trees. They can
Scheme implementation of oumL trees. So the bibliographical do that by means of théefine-pattern function of MIBIBTEX,
entry given in Figure 1 is represented as: some examples being given in Figure 2. The first example shows

how the previouslogo command can be processed: in this case, it
is processed like thetextsc command (see theitle andemph
) elements above).

(inproceedings (@ (id "zemianski2002a")
(language "polish"))
(author ...) (title ...)
Hereafter we sketch the effect of tdefine-pattern func-
tion, in order to show that end-users can easily customesa &ms-
formation of bibliography files intexmL trees. In particular, such
a customisation is easy since Scheme allows powerful apesat
on strings nicely. If a language like C was still used for MiB=X's
implementation, this kind of specification would be tedicauswe
would have to define a mini-language to do that.
The define-pattern function has two arguments. The first
is a string viewed as pattern, following the conventions ofgx
2.5 Alanguage accessible by end-users for defining commands, that is, the arguments of a command are
))) o denoted by #1, ‘#2, ... (cf. [28, Ch. 20]). If the second argu-
The choice of a language witkmL -like syntax for bibliography — ment is a string, it specifies a replacement, the argumentiseof
styles opens a window towardsiL 's world and some applications corresponding command being processed recursively. Huite

In addition, let us recall thabbst programs arexmL texts. To
parse them, we usesAX [26], its outputs beingsxML expres-
sions. Among other tools related 8xmL, we have also gained
experience by studying the functions implementing SXPaif, [
but have given our own implementation, in order to ease this ca
of external functions. Likewise, we wholly put into actidmetim-
plementation ohbst, as a ‘supexsLT’ processor with a kind of
inheritance about theanguage attribute.

become easier: for example, usinlst to build aHTmL file [53] that is, the second argument—could be given asxmL expres-
from a bibliography file in order to display its entries on tveb. sion, but we wish a particular representation not to occsidimthe

Or generating bibliographies for documents in DocBookx&m - Scheme code introduced by thef ine-pattern function: that is
based system for writing structured documents [54]. Butla@o yjhy we give it as a string whose content is expressed by means o
problem occurs: it is well-known that many end-users pfiig<L ‘usual’ XML syntax.

commands inside values oftHgX fields, because “old” BTEX it- This simple form can deal with many cases, but not all. If
self does not have enough expressive power. We alreadyonenti we look at the second example, we see how \thextbs com-

this fact in the introduction about commands from baéel pack- mand of &TEX is replaced by ana;nph element with accurate at-
age. In fact, it does not matter #TX documents are generated— yiptes: using bold face and non-italicised characteratay
although it can be told that such behaviour makes difficatsihar- be wrong, becausetextit{\textbt{. ..}} produces both bold

ing of bibliography files among several users because usessth face and italicised charactétsn IATEX. More expressive power
load the same packages as abovementioned—but may Cause ermojs needed to deal with such cases. In the developed form of

on other cases. For example: the define-pattern function, the second argument is a zero-

TITLE = {{\textsc{la}} Confidentiall} argument function that results in a string, which is theaephment
. . of the pattern. When this form is used, all the operationstrbas
In such a case—some letters to be typeset using small capicalr explicit within the body of this zero-argument function fact, the

parser of bibliography files can easily process this titleibiyng an

. > form:
element with accurate attribut@s:

9Hereafter theasitis element means that its contents should not be €leéments and attributes used within thleL versions of bibliography files

capitalised or uncapitalised, even if the bibliographylestyequires that. can refer to [15]: that is an earlier version, but changestgat.
The emph element and its attributes specifies typographic effects, e 10Readers interested in the font managemen®TpX_can refer to [33,
using small capitals in this example. Readers interesteddescription of Ch. 7].

80

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>")

P g p. y P

(define-pattern "\\textbf{#1}" "<emph emf=’no’ bff=’yes’>#1</emph>")
P P y P

(define-pattern "\\textit{#1}" (lambda ()

; ‘scf’ is a flag for ‘'small capitals.’

; ‘bff’ is for ‘boldface flag.’

;3 Notice that theemf attribute of theemph element—a switch between roman and italicised characters—
;3 defaults toyes, the other attributes default tm.

(define-pattern "\\textbf{#2}" "<emph bff=’yes’>#2</emph>")

;5 Local pattern.

(string-append "<emph>" (pattern-process "#1") "</emph>")))

Figure 2. Patterns forATleX commands in Scheme.

(define-pattern p s)
—wherep ands are strings—is equivalent to:

(define-pattern p
(lambda () (pattern-process s))

the pattern-process function belonging to MIBBTEX'S pro-
gram. The body of the function that is the second argument of
define-pattern may include the specification édcal patterns

as shown in the third example given in Figure 2. Let us comside
the last two patterns shown in this figure: when an occurrerfice
a\textbf command is encountered, the local pattern of the third
example is applied inside the argument oftextit command,

the ‘global’ pattern of the second example being appliedvdrgye
else.

3. The program
3.1 MIBIBTEX's architecture

In the previous section, we introduced to the main modules of
MIBIBTEX; now we show how they are put together. Figure 3
pictures MIBBTEX's architecture. This figure emphasises the data
flow: given some citation keys extracted from an auxiliaguk)

file, some bibliography.bib) files are searched and the result is
a list of bibliographical entries, given axML data. To do that,
MIBIBTEX's parser is enriched with a module for dealing with pat-
terns. As shown in Figure 3, some patterns are predefineds-som
like the pattern matching thg€logo command in Figure 2—can
be user-defined. The analysis of thex file also allows us to get
information about a bibliography style. If we do not consitlee
compatibility mode for oldbst files, bibliography styles are writ-
ten using thenbst language. These files are parsed usisaX,
grouped and ‘semi-compiled,’ in the sense that templatesexr
arranged in order to ease the determination of the tempale t
invoked when we are moving to a particular element. Each tem-
plate results in a Scheme function after this pre-procgssind the
bibliography processor applies such functions.

Like xSLT [52, § 16],nbst supports text, ‘xml’ and ‘html’
output modes! There is also 4.aTeX mode, taking into account
some particular points ofIgX’s syntax. So, only the strings to be
output are concerned by the differences betweert andLaTeX
modes. As examplessbst : text is used to put a stringerbatim
like thexsl:text element inXSLT—:

® <nbst:text>%</nbst/text> yields %’ in text mode, \%’
in LaTeX mode (in &TEX, ‘%’ introduces a comment [29,
§2.2.1], so it must be escaped to loose this property),

® <nbst:text>£</nbst:text>—the character numbered
163—yields this character (‘£’) irext mode and the com-
mand to produce it {pounds’) [29, § 3.2.2] inLaTeX mode,
this command being suitable whatever the encoding usedsy th
word processor is.

11 A html mode is needed sineerML texts do not fitxML 's syntax, stricly
speaking.

81

As mentioned in § 2.4, the programs .imbst files can use calls
to external functions written in Scheme. That is not herdtics
feature—using external procedures—existx@.T. We use such
external functions in Scheme to implement operations amgsyto
program lexical ordering that depend on natural languaayssto
searchtex files for information about the multilingual capabilities
allowed by the user of the source files, as shown in Figure 3.
We can be asked for a question: ‘why two languagést and
Scheme? why have we not used Scheme for the whole of a bibli-
ography style?’ Such a conventions would have madeIdEX
close to the stylesheets written irsssi*? [22], associated with
SGML texts. But it was told that programming witisssLwas dif-
ficult for style designers that are not experienced prograranin
fact, DsssLis not declarative enough, if we compare it¢sLT or
nbst. Besidesnbst allows refinements to be put into action with-
out modifying an existing style directly. For example, if aliBh
style designer finds out that the default version for a stylesd
not fit the Polish requirements for the layout of a refererme f
aninproceedings entry, such requirements can be implemented
by developing additional templates whose llaaguage attribute
is associated witlpolish. External functions written in Scheme
should be used for low-level computation, for examples ojoer-
ations dealing with the different characters of a stringfalet, we
think that style designers will not have to develop such fioms,
but they can do that if they wish.

Last but not least, Figure 3 makes precise the parts that are
finished presently: all, except that those pictured withitaahed
box, they are planned for the next version.

3.2 Our programming

Working about natural languages is an open domain, in theesen
that there is no general framework, from a theoretical pafintew,
that would cover all the natural languages in the world. What
suitable for a particular language may be unsuitable fotraaro
So even if we consider a wide range of natural languages, we ha
to do experiments and other experiments, reprogram sontipar
they have been modelled insufficiently, that is, if some ipakar
cases made fail a general scheme. Only a high-level progiagnm
language allows such approach. Besides, the ability forueads

to enrich the program by means of patterns (cf. § 2.5) seemes t
to be a decisive point for choosing Scheme. Let us compase thi
feature with the Emacs editor, written Emacs Lisp [31], and
customisable by user-defined functions written in this lage.
Such issues seem to us to justify the choice ofigrldialect. In
addition, when we decided to do a second implementatiorgusin
another language than C, we were familiar witts universe,
we have already developed a medium-sized programari@oN
Lisp: a rewrite engine for an algebraic specification languagg [1
But we noticed that GMMON LIsP was too big and heavy. We
did not want to accept its complexity, whereas we needed anly

12pocumentStyle SemanticsSpecification. This formalism is a side-effect
free subset of Scheme, enriched by a library for formattinipiats.

pattern processing

—————————————————————

,,,,,,,,,,,,,,,,,,,,

‘predefined’ patterns
(TeX commands for
accents and fonts)

MIBIBTEX's
G parser bibliographical entries MIBIBTEX's output: file of
.bib file(s) — . .
assxML data bibliography bibliographical references
processor
key citations and
name of data bases
.tex file(s)
.aux file Information about

multilingual
capability

bibliography external functions

style in Scheme
(possibly user-defined)
nbst file(s) bibliography style(s)

SSAX parser assxML data
\ interpretation of :
1
1

.bst functions

‘A — B’ means thatd usesB. More precisely, functions or data putihuse functions of3 or data fromB.

Figure 3. Data flow in MIBIBTEX.

small part of it. We were interested in programming in a senpl
Lispdialect, using only a few powerful constructs. In additiose,
already have taught Scheme to undergraduate [11] and deadua
[12] students.

Here are our rules of programming. Most of them aim to ease
maintainability.

 There are precise rules for naming global variables. IBTBX
is organised into modulésg,each module defining a prefix for
naming variables. For examplepattern-' is the prefix of
the functions dealing with patterns (cf. § 2.5). Here are the
exceptions:

= some general functions and macros, grouped into one file,

= local variables, that is, variables defined in the body of the
special formslefine, do, lambda, let, let*, andletrec,

= protected variablesas we will see below, their names al-
ways end with ~pv;’ when they are used in several mod-
ules, they do not have any prefix.

13 From our point of view, these modules only exist in connettiaconcep-
tion, we do not use any syntactic feature—e.g.,ibéule specification of
the Scheme compilédsigloo [40, § 2.2] orPLT Scheme [6, § 5]—for them.

82

Side effects are only allowed for local variables. In adudiiti
we have carefully followed the recommendation about naming
destructive functions in Scheme [24, § 1.3.5]: if a function
mutates any of its arguments, its name ends with °

Information is retained locally, by means of lexical closand
unlimited extent as far as possible. If several functidiesi
share the same environment, they are put into action by one
function working bymessage-passing his technique is used
for protected variablesthey are protected since they are en-
closed within a lexical environment. For example, the loitpli
raphy style, as a path tordst program, is managed this way:

((bibliographystyle-pv ’see)) ; Get the value.
((bibliographystyle-pv ’set) ...) ; Update.

In fact, this technique can be viewed as object-oriented pro
gramming in Scheme, as shown in [1, Ch. 2] and [39]. We could
have defined a global variable whose value is such a path and
setting it whilst MIBBTEX is running. We could put a syntactic
sign inside its name to warn readers of our program that this
variable is supposed to be modified. But we have preferred for

(define (parsers-make-launching filename launcher)

;3 launcher is the function that rules the analysis of the input file. Hguenents are the function going forward through

;; the file and the function managing errors.

(call-with-current-continuation (lambda (parser-exit-c)
(parsers-filename-rp-loop filename launcher parser-exit-c))))

(define (parsers-filename-rp-loop filename launcher parser-exit-c)

;3 filename being an absolute path to an existing file, opens it,

;3 corresponding port.
(let ((input-p ’*dummy-valuex))
(dynamic-wind

runsa@aed-process loop, and closes the

;3 Even if thelauncher function encounters errors, the input port is closed. Tte sffect oninput-p is allowed

;3 W.L.t. our conventions, because it is a local variable.
(lambda ()

;3 Reenter the middle thunk causes the input file to be open again

(set! input-p (open-input-file filename)))

(lambda () (launcher (make-r-thunk input-p) parser-exit-c))

(lambda () (close-input-port input-p)))))

(define (make-r-thunk input-p)

;3 The result is a thunk—zero-argument function—that movesdod through the input file.

(lambda () (read-char input-p)))

(define (make-x-function parser-exit-c)

;3 The result is an escape functionz=-is for ‘e Xit'— that displays an error message, and stops reading girthe input file.

(lambda (msg-idf)
(msg-manager msg-idf)
(parser-exit-c #f)))

Figure 4. Basic functions to build MIBBTEX's parsers.

all the ways to get the value of such information or update it t
be grouped into one function within our prografn.

We did not use lexer and parser generator like those proposed

in [34], analogous taEx andYAcc, which generates C programs
[30]. In fact, we could have done that for thet language, be-
cause lexical and syntactic analyses are clearly distifgai in
this case. However, there is no distinction between scaaner
parser in EX’s languagé!® also used in auxiliary files where in-
formation about bibliographies to be build are located §c?.2).
For this language, there is only one analyser, which reteither a
whitespace character, or another character, different fkd or the
complete name of a macro. Concerning bibliography files, are c
separate lexical and syntactic analysis—we did that in teever-
sion [13, Annex]—but that yields a two-level grammar: a fiesel
for entries (@...{...}'), a second for values associated with field
names. So, we have preferred to devedophocparsers for these
languages. Last, we use tBsAX parser fombst programs, since
they arexmL documents.

‘unread’ a charactér. On the other hand, a parser is reading in
advance. The solution put into action is that the functioheur
parser return at least two values: the result of processifigca
ment of the input file, and the first character belonging tatken
after what has just been processed. A simple example is given
Figure 5. These parsers were easy to debug: we replacednte fu
tion moving forward through an input file by a function given i
Figure 6 and exploring successive characters of a stfiag. the
read-char function would do after opening a string port in the
sense oBRFM Nr. 6 [3].

Concerning the management of multilinguism, the infororati
related to natural languages used throughout bibliogragdta
bases is organised intare:?° see [21] for more details.

4. Scheme as an implementation language

First we developed MIBTEX's present version witviT Scheme
[2, 9]. Then we study how to put a portable implementation int

We have defined a common framework for the parsers we have gction with bigloo [40] and PLT Scheme [6, 37]. We carefully

built ourselves, the main functions are given in Figure 4.cBp-
vention, the arguments of the parser’s functions includem-z
argument function to move forward through the input file and a
escape function stopping reading through the inputfilSince
this zero-argument function is our only way to get sometliiogn
the current input file inside the functions of our parser, wendt

14|n addition, if we consider a variable defined globally andlaged at
run-time, it can be difficult to detect that it has not beerigresd yet to its
‘actual’ value. We could define it by bounding it to a ‘dummylue, but
there is no ‘universal dummy value.

15That is the case for some early languages.

16|n particular, this function is called when an error is entened. There
is no error recovery in MIBBTEX—our parsers stop as soon as an error is
encountered—but there was not in ‘oldBBEX, either.

83

grouped non-portable code in one file, so we knew which parts
could be difficult to adapt.

17In fact, we could use thgeek-char function of Scheme [24, § 6.6.2] for
this operation, but we decided to proceed only ahead, honaagesly.

18Besides, this function is used in ‘final’ MIBTEX: when an abbre-
viation, defined by ¢STRING{schw = {Scheme Workshop}}'—cf. [33,
§ 13.2.3]—is used, e.g., iBOOKTITLE = schw’, MIBIBTEX'S parser in-
serts the contents of the string associated witthis’ by means of the
make-r-string-thunk function.

19schemerequesFor | mplementation. For more details, see the Web page
http://srfi.schemers.org.

20 trie is a particular case of a tree for storing strings: there Iy one
node for every common prefix.

(define (s-parse-string-def r-thunk char x)

;5 ‘s-' is the prefix for functions parsing bibliography files. Pars®STRING{<token-0> =

<string-value>}, ' @STRING' being

;3 recognisegdchar being the first character after-thunk is the O-argument function that allows us to move forwarduigh the
;5 Input file, x is the escape function that stops reading and retitres the global result of parsing.

(call-with-values (lambda ()
(s-next-bibtex-idf r-thunk

;3 Checking that the token beginning withar is ‘{’ and returning the first character
;3 after, in case of success:
(s-recognise-left-brace r-thunk char x)

x))
(lambda (token-0 char-0)
: token-0 is the abbreviation’s namehar-0 is supposed to be=.

(call-with-values (lambda () (s-parse-value r-thunk (s-recognise= r-thunk char-0 x) x))

(lambda (string-value char-1)
((s-string-defs-pv ’add) token-0 string-value)

; Adds the bindingcoken-0 +— string-value. Let us notice that

; s-string-defs-pv is a protected variable (cf. § 3).
;3 First, recognisind}’ and returning the first character after, then processingerdry, that is, nexte{. ..} and

;3 returning two values:

(s-next-entry r-thunk (s-recognise-right-brace r-thunk char-1 x)))))))

Figure 5. How our parsers use multiple values.

Our only error related to portability was an occurrence & th
false value inadvertently replaced by the empty fstAnother
portability problem arose from accented letters typed bggian
encoding which extendsscii:

(char-alphabetic? #\&) =-wir Scheme #t
(char-alphabetic? #\&) =bigloo, PLT Scheme #f

In reality, such a case is unspecified by the standard Schiewwe s
this standard does not specify whether or not a characterie’

is a letter and since thehar-alphabetic? function can only be
applied to letters. Anyway, porting MIBTEX raises a very small
number of problems, but difficult, because they were relaideda-
tures outside the standard Scheme. In fact, most of thesssaa-
tioned hereafter are not MIBTeX-specific and have already been
debated, but we mention them, as a short report of our experie
and as additional examples of these problems.

4.1 What we have liked

A common pitfall for Scheme programmers is the order of exalu
tion of a function’s arguments: it is left unspecified by treh&me
reports [24, § 4.1.3] and may vary from an interpreter to et

Dealing with multiple values is very common within the saairc
files of MIBIBTEX, an example being given in Figure 5, many other
examples existing for functions dealing with multilingirslorma-
tion. A new special form such aset-values, as suggested by
SRFI11 [8], would simplify these examples.

4.2 What we have missed

The functions dealing with input filesspen-input-file and
call-with-input-file, signal an error if the file cannot be
opened. But by using only the forms of the Scheme standard, we
cannot know this information before trying this operatidine
same problem arises from the functions dealing with outpes,fi
open-output-file andcall-with-output-file. This can be
solved by means ofonditions—this notion exists in ©MMON
Lisp [47, Ch. 29], but not (yet?) in the standard Sch&meas
suggested bgRFI36 [44].

Some interpreters T Scheme [9, § 5.7higloo [40, 8§ 4.1.8
& 4.1.10]—allow characters to be processed using Unico@ [4
but only partially. That should be added in the future stadda
since more and more information will be encoded according to
some extensions of thescii code:latin-1 (or ISO-8859-1) for
West-European languag&slatin-2 for East-European ones, ...

in practice. To be honest, the absence of a fixed order may look ynjcode precisely redefines what letters, signs are. Peadpdsr

strange at first glance, but we think that it is straightfaryat
forces programmers to emphasise what is sequential wikigin t
programs, most often by using the special foaras or let*.

putting these definitions in Scheme arFI 14 [41] and 75 [7].
As mentioned at the beginning of this section, some intéepse
presently diverge about this point, which should be refined f

As far as possible, we use Scheme as a functional programmingsyrther versions of Scheme.

language, in the sense that functions can be argumentsdtsres
of other functions. Since Scheme has only one namespacés tha
functions are particular values for variables, our proghaoks ho-
mogeneous. In GMMON LIsP or other Lisp dialects where func-
tions belongs to a particular namespace [47, § 5.2], disfiom the
‘other’ variables, we would have had to add many occurrenfes
thefunction special form and théuncall function, what would
complicate the programming.

Advanced functions likecall/cc and dynamic-wind [24,
§ 6.4] are used in MIBTEX (cf. Figure 4). However, let us men-
tion that wherever we use these functions, simplified forass,
they are provided by GMMON LisP would have been sufficient:
dynamically-scoped exits, by means of the special foeansch
andthrow [47, § 7.11], and the special formnwind-protect.

21| et us recall that iMIT Scheme#f and () are still the same object [9,
§1.2.5].

84

We especially missed an interface with the operating system
the sense of a function that would have launched a commare of t
operating system, and be able to retain its result displayethe
current output port, this result being a string usable byihetions
of Scheme. From a general point of view, we think that in tlaast
dard Scheme, such a function would be more useful than dpecia
interfaces with specific programming languages like QJara®*
[40, 88 15 & 16]. More specifically, software belonging XS
world usually call functions of th&pathsea library [50], used for
locating files. For example, the bibliography styles useddhy
BIBTEX can be located by means of thpsewhich command:

22 but some Scheme interpreters incorporate them:n.g.Scheme [9,
Ch. 16].

23|nternally used inIT Scheme [9, § 5.5].

24Besides, this function could be used to run the compiled fofna
program written using these languages.

(define (make-r-string-thunk string-0)
;3 Returns a thunk exploring each charactesofing-0, in
;3 turn. When the end of this string is reachetl is
;5 returned.
(let ((string-length-0 (string-length string-0))
(index 0))
(lambda ()
(if (< index string-length-0)
(let ((result (string-ref string-0 index)))
(set! index (+ index 1))
result)

#£))))

Figure 6. Moving forward through a string.

kpsewhich plain.bst
.../texmf/bibtex/bst/base/plain.bst

In order to put a similar feature into action for MEEX, a
workaround was to implement a simplified version of this com-
mand in Scheme. This implementation is not wholly satisfigct
from a point of view related to portabiblity because this eom
mand usegnvironment variablesnaccessible directly from stan-
dard Scheme function8IBINPUTS, TEXBIB for ‘old’ B|BTEX,25.
MIBIBTEX uses first the environment variatieBIBINPUTS, be-
fore considering those ofIBTEX [20].

Last, Scheme could inclugmckagesn the sense of GMMON
Lisp[47, 8 11.2], a simpler version being sufficient. If we deyelo
software under the predefined functions of Scheme, a goait dis
pline for naming functions is sufficient to avoid name clasHzgut
packages would ease software composition. For example the
no document explaining how functions and macrosxfiL have
been named. So we had to be very careful to this point when we
decided to use this software for dealing witkiL documents.

4.3 Proposals

In [42], Dorai Sitaram writes that ‘thegeg] Scheme standard and
the Scheme reports do not define a useful programming laeguag
for all platforms. Instead they [...] define a family of pragr-
ming languages that individual implementors can instémtia a
concrete programming language for a specific platform.tTiha
true, but what does it mean in practice? That an ambitiougraro
rhas to rely on a particular dialect? Such dependence seeuss t
to be acceptable for a program using special effects (eaphical
parts), but is strange for functionalities related to a $aipterface
with an operating system (e.g., file existence). Besidesh el
alect obviously provides such a function, and most oftereutiae
same namefile-exists? in MIT Scheme [9, § 15.3], ibigloo
[40, § 4.2.2], inPLT Scheme [6, § 11.3.3]. Naming them homo-
geneously should be possible. Other examples are sulglsaube
functions are not known under the same name: if we wish tdhget t
values of environment variables set at the operating systeei
(cf. 8§ 4.2), the function iget-environment-variable in MIT
Scheme [2, § 2.6etenv in bigloo [40, § 4.2.1] andPLT Scheme
[6, & 15.4]. Analogous points can be noticed about the fonsti
passing a command to the operating system level.

In the foreword of [45], Guy L. Steele Jr. wrote: ‘[...] Small
is easy to understand. | like the Scheme programming largguag
because it is small.’ But Scheme can include a small interfeth
basic services of operating systems and be still small. Swschall
interface would not give GMMON LISP's complexity to Scheme.

It may be difficult to decide about the names to be given to the
functions of this interface, because some software alraadgome

25However, we had to consider these environment variablesdke of
compatibility with BBTEX.

85

functions specific to particular interpreters, so it wouétbdious

to rename them. A workaround could be an additional predefine
variable whose value would group the whole information dbou
the present interpreter, its name and version number, thag
operating system, etc. The purpose of the zero-argumentidum
identify-world of MIT Scheme [2, § 2.1] is close, but such
information is only displayed when the function is applietda
cannot be retained in a variable since this function doesetotn
any result. Such a variable had been defined @M@0ON LISP:
xfeatures* returns a list offeaturescharacterising a particular
implementation [47, 8 25.4.2]. Features have also beerpgeazpin
SRFI0 [5], that seems to us to be a promised way. In particulah suc
ways a variable would ease the writing of a tool ligkeMXLATE
[42], a software for porting Scheme programs from a dialect t
another.

5. Conclusion

When we teach Scheme to undergraduate students, some of them
asks us about using this language in ‘real’ situations. @usgnal
opinion is that Scheme is certainly less used than an imperat
language like C, or alanguage in fashion likeva. However, some
medium-sized projects have been programmed using Schehe, a
often the use of this language in such cases was succesgfabd\
illustration of that is MIBBTEX. Doing the second implementation
in Scheme was faster than doing the first in C, and perforngance
are comparable. Surely, it is well-known that the higher phe-
gramming language’s level, the faster the development. tarizk
honest, many problems had already been specified and salved f
the first version, so often adapting C structures to Scheras was
sufficient. But on the other hand, the second implementaiion
poses many more functionalities.

At the time of writing, we are working on MIBTEX's instal-
lation, in order for this program to be able to work with a drea
number of Scheme interpreters. We think that we could sucge
usingGNU tools such asnake [46] andautoconf [32].

We enjoyed programming MIBTEX in Scheme. We hope
that we could go on with our implementation. We think that we
could do better for future versions, especially about pssirey
Unicode characters, according to an interpreter-indegpeinaay.

So Scheme will be a modern language, since the localisafion o
software, including the use of several writing systems,uisent
challenge. Likewise, we hope that installing software paogmed
using Scheme will become easier. So Scheme will be not only ‘a
efficient and practical programming language’ [24], but il e
more portable and more suitable for the modern types ofgstrin

Acknowledgements

I am very grateful to the anonymous referees, who allowedane t
improve the first version of this article substantially. Mdhanks to
Michael Sperber, too, for his patience when he was waitinghis
article.

References

[1] Harold ABeLsON and Gerald Jay $sSMAN: Structure and Interpre-
tation of Computer ProgramsThe MIT Press, McGraw-Hill Book
Company. 1985.

[2] Stephen MAMS, Chris HANSON andTHE MIT SCHEME TEAM: MIT
Scheme User's Manuglst edition. June 2002.

[3] William D. CLINGER: Basic String Ports July 1999. http:
//srfi.schemers.org/srfi-6/.

[4] Antoni DILLER: IATEX wiersz po wierszu Wydawnictwo Helio,

Gliwice. Polish translation ofTgX Line by Linewith an additional
annex by Jan Jelowicki. 2001.

[5] Marc FeeLEY: Feature-based Conditional Expansion Construct
May 1999.http://srfi.schemers.org/srfi-0/.

[6] Matthew FLATT: PLT MzScheme: Language Manual. Version
299.100 March 2005. http://download.plt-scheme.org/
doc/299.100/mred. pdf.

[7] Matthew FLATT and Marc FEELEY: R6RS Unicode Dataluly 2005.
http://srfi.schemers.org/srfi-75/.

[8] Lars T. HANSEN: Syntax for Receiving Multiple Valudglarch 2000.
http://srfi.schemers.org/srfi-11/.

[9] Chris HANSON, THE MIT SCHEME TEAM et al: MIT Scheme
Reference Manuallst edition. March 2002. Massachusetts Institute
of Technology.

[10] Jean-Michel HIFFLEN : Fonctions et généricité dans un langage
de programmation paralléle Thése de doctorat, Institut National
Polytechnique de Grenoble. Juillet 1989.

[11] Jean-Michel HIFFLEN : Programmation fonctionnelle en Scheme. De
la conception a la mise en ceuvidasson. Mars 1996.

[12] Jean-Michel HIFFLEN : Programmation fonctionnelle avancée. Notes
de cours et exercice®olycopié. Besangon. Juillet 1997.

[13] Jean-Michel HUFFLEN: “MIB IBTEX: a New Implementation of
BIBTEX". In: EuroEX 2001 pp. 74-94. Kerkrade, The Netherlands.
September 2001.

[14] Jean-Michel HIFFLEN: “Lessons from a Bibliography Program’s
Reimplementation”. InLDTA 2002 Vol. 65.3 of ENTCS Elsevier,
Grenoble, France. April 2002.

[15] Jean-Michel HWIFFLEN: “Multilingual Features for Bibliography
Programs: FronxmML to MIBIBTEX". In: EuroeX 2002 pp. 46-59.
Bachotek, Poland. April 2002.

[16] Jean-Michel HUFFLEN: “Mixing Two Bibliography Style Lan-
guages”. IniLDTA 2003 Vol. 82.3 of ENTCS Elsevier, Warsaw,
Poland. April 2003.

[17] Jean-Michel HUFFLEN: “European Bibliography Styles and
MIBIBTEX". TuGboat Vol. 24, no. 3, pp. 489-498. EurpX
20083, Brest, France. June 2003.

[18] Jean-Michel HUFFLEN: “MIB IBTEX's Version 1.3". TuGboat Vol. 24,
no. 2, pp. 249-262. July 2003.

[19] Jean-Michel HUFFLEN: “A Tour around MIBBTEX and Its Imple-
mentation(s)”.BiuletynGusT, Vol. 20, pp. 21-28. IiBachoEX 2004
conferenceApril 2004.

[20] Jean-Michel HUFFLEN: “Making MIBIBTEX Fit for a Particular
Language. Example of the Polish Languadg®iuletyncusT, Vol. 21,
pp. 14-26. 2004.

[21] Jean-Michel HFFLEN: Managing Languages within MIBTEX. Will
be presented at Prgeq conference, Chapel Hill, North Carolina.
June 2005.

[22] International Standan$o/IEC 10179:1996¢): DSSSL 1996.
[23] Java TechnologyJune 2005http://java.sun.com.

[24] Richard KeLsEY and William D. QLINGER, eds.: “Revisetl Report
on the Algorithmic Language Schemeiosc, Vol. 11, no. 1, pp. 7—
105. August 1998.

[25] Brian W. KERNIGHAN and Denis M. RrcHIE: The C Programming
Language 2nd edition. Prentice Hall. 1988.

[26] Oleg KiseLyov: “A Better xML Parser through Functional Program-
ming”. In: 4th International Symposium on Practical Aspects of
Declarative Languages/ol. 2257 ofLNCs. Springer. 2002.

[27] Oleg KiseLyov and Kirill LisovsKy: “XmML, XPath,XsLT Imple-
mentations asxML, SXPath, andsxsLT". In: International Lisp
Conference 20025an Francisco, California. October 2002.

[28] Donald Ervin KNUTH: Computers & Typesetting. Vol. A: the
TeXbook Addison-Wesley Publishing Company, Reading, Mas-
sachusetts. 1984.

[29] Leslie LAMPORT: IAIeX. A Document Preparation System. User’s

86

Guide and Reference Manuaddison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[30] John LEVINE, Tony MAsSON and Doug BROWN: lex & yacc. 2nd
edition. O'Reilly & Associates, Inc. October 1992.

[31] Bill L Ewis, Dan LALIBERTE, Richard M. SALLMAND and THE
GNU MANUAL GROUP. GNU Emacs Lisp Reference Manual
for Emacs Version 21. Revision 2.8January 2002. http:
//www.gnu.org.

[32] David MACKENZIE, Ben E_.LISTON and Akim DEMAILLE: au-
toconf. Creating Automatic Configuration Scripts. Version 2.59
November 2003.http://www.gnu.org/software/autoconf/
manual/.

[33] Frank MITTELBACH, Michel GOOSSENS Joannes BAAMS, David
CARLISLE, Chris A. ROWLEY, Christine DETIG and Joachim
SCHROD: The BIpX Companion 2nd edition. Addison-Wesley
Publishing Company, Reading, Massachusetts. August 2004.

[34] Scott ONVENS, MATTHEW FLATT, Olin SHIVERS and Benjamin
MCMULLAN: “Lexer and Parser Generators in Scheme”. Rroc.
ACM SIGPLAN 2004 Scheme Workshapp. 41-52. Snowbird, Utah.
September 2004.

[35] Oren RTASHNIK: Designing BBTEX Styles February 1988. Part of
BIBTEX's distribution.

[36] Oren RTASHNIK: BIBTEXing. February 1988. Part of IBTEX's
distribution.

[37] pLT: PLT MzLib: Libraries Manual. Version 299.100arch 2005.
http://download.plt-scheme.org/doc/299.100/mzlib.
pdf.

[38] Erik T. RAY: LearningxmL. O’Reilly & Associates, Inc. January
2001.

[39] Jonathan A. Res and Norman |. AAMS 1v: “Object-Oriented
Programming in Scheme”. IProc. of the 198&cm Conference
on Lisp and Functional Programmingp. 277—-288. Snowbird, Utah.
1988.

[40] Manuel SERRANO: Bigloo. A Practical Scheme Compiler. User
Manual for Version 2.6cJune 2004.

[41] Olin SHIVERS: Character-set Library December 2000.http:
//srfi.schemers.org/srfi-14/.

[42] Dorai STARAM: “Porting Scheme Programs”. IiRroc. of the 4th
Workshop on Scheme and Functional Programming, UUCS-03-
023 pp. 69-74. School of Computing, University of Utah, Boston
Massachusetts. November 2003.

[43] Karel SxoupY: “The Software Quality andVyS”. GUST, Vol. 16,
pp. 41-49. 2001.

[44] Michael SPERBER I/O Conditions June 2003.http://srfi.
schemers.org/srfi-36/.

[45] George $RINGERand Daniel P. RIEDMAN: Scheme and the Art of
Programming TheMIT Press, McGraw-Hill Book Company. 1989.

[46] Richard M. SALLMAN , Roland McGRATH and Paul $I1TH: GNU
make. A Program for Directing Recompilation. Version 3.8uly
2002.http://www.gnu.org/software/make/manual/.

[47] Guy Lewis STEELE, JR.: COMMON LIsp. The Language. Second
Edition. Digital Press. 1990.

[48] Philip TAYLOR, Jifi ZLATUSKA and Karel &ourY: “The NS
Project: from Conception to ImplementationCahiers GUTenberg
Vol. 35-36, pp. 53—77. May 2000.

[49] THE UNICODE CONSORTIUM: The Unicode Standard Version 4.0
Addison-Wesley. August 2003.

[50] TuG Working Group on a gX Directory Structure:A Directory
Structure for EX Files. Version 0.9995CTAN: tex/archive/tds/
standard/tds-0.9995/tds.dvi. January 1998.

[51] W3C: xMmL Path Language (XPath). Version 1.&v3c Recommen-
dation. Edited by James Clark and Steve DeRose. Novembé&r 199
http://www.w3.org/TR/1999/REC-xpath-19991116.

[52] W3C: xsL Transformations XsLT). Version 1.0 w3c Rec-
ommendation. Edited by James Clark. November 1988tp:
//www.w3.org/TR/1999/REC-xs1t-199911186.

[53] W3C: HyperText Markup Language Home Padday 2005.
http://wuw.w3.org/MarkUp/.

[54] Norman WALSH and Leonard MELLNER: DocBook: The Definitive
Guide O'Reilly & Associates, Inc. October 1999.

87

88

The Marriage of MrMathematica and MzScheme

Chongkai Zhu
mrmathematica@yahoo.com

Abstract

In this paper, | argue that the programming languages peovid
in current mainstream CASes are not suitable for general pur
pose programming. To address this problem, | developed Mh&da
matica. MrMathematica is a connection between Mathematici
PLT-Scheme, which provides the ability to call Mathemaficen

2. CAS programmers need a real language

A key issue in the design of CAS is the resolution of what ismea
by “evaluation” — of expressions and programs in the embaédde
programming language of the system.

Roughly speaking, evaluation is a mapping from an objeet (in
put) and a specified context or environment to another oliedt

MzScheme. The two languages share some common ground, buis a simpler or more specific object (output). Example: 2+&lev

are mostly complementary to each other. MrMathematicareces

ates to 5. More specifically and somewhat pedantically, ilA&.C

Mathematica, and it helps to introduce Scheme to more people evaluation involves the conventional programming languagp-

(CAS users).

1. Introduction

A Computer Algebra System(CAS) is a type of software package
that is used in manipulation of mathematical formulae. Tif@ary
goal of a CAS is to automate tedious and sometimes difficgt-al
braic manipulation tasks. The principal difference betwaeCAS
and a traditional calculator is the ability to deal with etjoias sym-
bolically rather than numerically. The specific uses andabép
ties of these systems vary greatly from one system to anotaer
the purpose remains the same: manipulation of symbolictemsa
CASes often include facilities for graphing equations aral/jge

a programming language for the user to define his/her owreproc
dures.

CASes began to appear in the early 1970s, and evolved out

of research into artificial intelligence (in Lisp), thoudhetfields

are now regarded as largely separate. The first popularnsgste
were Reduce, Derive, and Macsyma. The current market leader
are Maple and Mathematica; both are commonly used by rdsearc
mathematicians, scientists, and engineers.

The programming languages provided in all the current main-
stream CASes are not suitable for general purpose prognagami
To address this problem, | developed MrMathematica, a Sehem
based system that keeps the repertoire of Mathematica.

The remainder of this article is organized as follows. Secfl
of this paper discusses why CAS programming language fatls a
why a real language is needed; Section 3 introduces Matleamat
briefly; Section 4 gives details about MrMathematica; Secth
concludes.

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Chongkai Zhu.

89

ping of variables or names (e.g. x) to their bound values 8,@nd
also the mapping of operators (e.g. +) to their actions. tessen-
tionally, CAS evaluation generally requires resolutiorsitfiations

in which a variable “has no value” but stands only for itselfjn
which a variable has a value that is “an expression”. For @@m
given a context where x is bound to 3, y has no binding or is used
as a “free variable”, and z is a+2, a typical CAS would evauat
X+y+z+1 to y+a+5.

In simple cases this model is intuitive for the user and effity
implemented by a computer. But a system design must alsdéhand
cases that are not so simple or intuitive. CAS problem-gaglvi
sessions abound in cases where the name and its value(shé so
context(s) must coexist. Sometimes, values are not therelgyant
attributes of a name: there may be a declaration of “type”tbeio
auxiliary information. For example it might evaluate® =z < 1 to
“True” knowing only that x is of type “Real”.

CAS builders, either by tradition or specific intent, often-i
pose two criteria on their systems intended for use by a "g¢he
audience. Unfortunately, the two criteria tend to conflict.

1. The notation and semantics of the CAS should correspond
closely to “common intuitive usage” in mathematics.

2. The notation and semantics of the CAS should be suitable fo
algorithmic programming as well as (several levels) of dpsion
of mathematical objects, ranging from the abstract to ttaively
concrete data representations of a computer system.

The need for this first requirement (intuitiveness) is namat
gued. If programs are going to be helpful to human users inte-ma
ematical context, they must use an appropriate common &gegu
Unfortunately, a careful examination of common usage shbes
semantics and notion of mathematics as commonly writterf-is o
ten ambiguous or context dependent. The lack of precisisudh
mathematics (or alternatively, the dependence of the sersaf
mathematical notation on context) is far more prevalent thiae
might believe. While mathematics allegedly relies on rigiod for-
mality, a formal “automaton” reading the mathematicalrétere
would need to accumulate substantial context or else sgiféatly
from the substantial abuse of notation that is, for the mast, p
totally accepted and even unnoticed by human readers. @ansi
cos(n + 1)z sinnz.

Because the process of evaluation must make explicit thé bin
ing between notation and semantics, the design of the di@ua
program must consider these issues centrally. Furtherravatu-
ation typically is intertwined with “simplification” of ragdts. Here

again, there is no entirely satisfactory resolution in thmisolic So | wrote MrMathematica, which lifts and embeds a popular

computation programs or literature as to what the “simpliesm CAS, Mathematica, into Scheme. Although the currently ioers
of an expression means. targets only MzScheme, its design is portable to any Lispemp

As for the second requirement, the need for programming and mentation that can be extended using C. Mathematica wagihos
data description facilities follows from the simple facattcom- because it has the most dynamic language among major CASes;
puter algebra systems are usually “open-ended”. It is nedipée to PLT Scheme was chosen because it has a good interface agé a lar
build-in a command to anticipate each and every user remeing user group.

Therefore, except for a few simple (or very specific, appiica
oriented) systems, each CAS provides a language for theteiser 3. |ntroduction to Mathematica
program algorithms and to convey more detailed specifioataf
operations of commands. This language must provide a bfage
a computer algebra system user to deal with the notationsend
mantics of programming as well as mathematics. Often thesse
including constructions which look like mathematics buténdif-
ferent meanings. For example, in Mathematica x = x+1 is @nogr
ming language assignment statement; x == x + 1 is an appgrent
absurd assertion of equality. Furthermore, the programrtan-
guage must make distinctions between forms of expressibes w
mathematicians normally do not make such istinctions. Asxan
ample, the language must deal with the apparently equal diut n
identical expressions 2x and x + X.

Programming languages also may have notations of “storage
locations” that do not correspond simply to mathematicétions.
Changing the meaning (or value) of an expression by a sieéeteff
is possible in most systems, and this is rather difficult tplax
without recourse to notions like “indirection” and how daga
stored. For example, in Mathematica, m[[1,1]]= b assigrige/¢o
a position in the matrix m.

With respect to its evaluation strategy, each existing CA
chooses its own twisting pathway, taking large and smallesom
times controversial stands on different issues, along the et'’s
see an example in Mathematica:

In a typical CAS, an internal evaluation prograav4l for short),
plays a key role in controlling the behavior of the systemerv
thougheval may not be explicitly available for the user to call, it
is implicitly involved in much that goes on. Typicallyal takes as
input the representation of the user commands, prograrotivies,
| and other “instructions” and combines them with the “statithe
system to provide a result, plus sometimes a change in thte"st
Mathematica is one CAS that has a singial.

The central data types of Mathematica are just the same as
Scheme: numbers, symbols, and lists. The abstract synttheof
two languages is also congruent: every expression is &distéd
tree. To accommodate traditional mathematical expressjon
tax, Mathematica defines several formsputForm, OutputForm,
TranditionalForm, FullForm, and so on. The FullForm is very
close to S-exp, and is the internal representation of esfmesA
FrontEnd is used to convert between ordinary mathematkpabs-
sion (InputForm, OutputForm, TranditionalForm) and Falifa.

Mathematica has two major difference compared with Lisp.
g First, Mathematica doesn't have quote. Second, Mathemates

array (of pointers) instead of Lisp’s linked-list.

The underlying strategy for evaluation in Mathematica isdsh
on the notion that when the user types in an expression, gieray
should keep applying rules (and function evaluation meares r

i=0; application in Mathematica) until the expression stopsngiray.
glx_] := x+i/;i++ > x (The example in the previous section just violate this sggf)
To get a detailed introduction of Mathematica languagegee

Or put in Scheme syntax: refer to part 2 of [2], or [6].

There are additional evaluation rules for numerical coratom
(begin (Set i 0) in which Accuracy and Precision are carried along with eaghn
(SetDelayed (g (Pattern x (Blank))) ber. These are intended to automatically keep track of nigader
(Condition (+ x i) errors in computation.
(> (Increment i) x)))) Besides the rule-based language, Mathematica also offamg m
mathematical functions and methods, including algebrainipu-

The two allegedly equivalent expressions (list (g 0) (g @ a lation, symbolic calculus, plotting, and so on. Part 3 ofd@$cribes
(Table (g 0) (list 2)) result in (list (g 0) 2) and (list (g 0) @) them in detail.
respectively.

" cher CASes_suffereshfrom ii_mileg_ problems. [4] l;/:otmhéthe au- 4, Structure and Interpretation of
or’'s own experience, when writing big programs in Mathéoza .
(or some other major CAS), such problems can and will arise, r MrMathematica

sulting in substantial debugging difficulty. Scheme is a meta-language and MzScheme is actually an opera-
Providing a context for “all mathematics” without makingath tion system [3], while Mathematica regards itself only asca s

unambiguous underpinning explicit is a recipe that ultehakeads entific computation tool. This determines the architectufrér-

to dissatisfaction for sophisticated users. Mathematica: It works as an extension to MzScheme, whids cal

Is there a way through the morass? A proposal (eloquently Mathematica.
championed some time ago by David R. Barton at MIT and more Among all possible interface (between Scheme and Mathemat-

recently at Berkeley) [4] goes something like this: WriteLiisp ica). | choose to implement the simpest one, MathEval, wisch
or similar suitable language and be done with it. This sothes exactly theeval used by Mathematica. MathEval is provided as
second criterion. As for the first criterion of naturalnesketthe a Scheme function, with input and output done in S-exp, ngakin
mathematician/user learn the language, and make it eiplici use of the similarity between S-exp and FullForm. MathEwd s

But there is nearly no CA library in Scheme, besides the fices. Even if you want some “better” interface, the right way
lightweight JACAL. Statistics shows that for those peoplbow implement it is first to define the same MathEval, and then to de
want to do symbolic computation with a computer, nearly efl a fine your interface based on it. Another merit of MathEvalhatt
using a CAS, and nearly none is using Lisp, although mostesfith it needs explicit quote, which helps distinguighing betwakyebra
also want general purpose programming at the same time.’%What expression and other Scheme value.
worse, CASes that are in/with Lisp (such as MACSYMA, Axiom) Mathematica and MzScheme are both implemented in C, so it
have only negligible market share. is natural for MrMathematica to use C as transmitter. Butrttze

90

A Sfy# — DrScheme

FHTS E)

- OX

RS (H)

JHEGE) WIEGE) WEG@ BFQ) Schene
ﬂ%ﬁ&ﬁ-g b T
(dofne oy v | B S PAT

|@DebugH@Analyze“o*ﬁﬁz"%& ”}’@ﬁ]|©1$_IJ:]

Fim4E A DrScheme, KA 299,
WEE Tedual (MzScheme + 81ERERS).
> (require

> (MathEwval "{Integrate (/ 1 (-

4 &
Gk facs log OF =1 2l 5 =2

> (MathEval ' (Factorial 100)}

{log

pooooooooooooOoooD
» {define (prime? n)
[MathEval ~{(FPrimeg ,n)))

> (prime? 1299709

#t

> {prime? 123456789)

#

= (MathEval ' {ContourPlot
{Rule ContourLines #f)1})

{sin

{1ib "mathematica.ss™ "mrmathematica”))
[expt x 2)

i+ 1=

93326215443944152681699238856266700490715968264381621468592963895217595 2
9932299156085414639761565182862536979208272237582511685210916586400000000 2

(% % v

) =)

{list % -5 5} (list v -5 5} 2

[EHREE | 66,715,648 #/5

Figure 1. MrMathematica session

jor part of MrMathematica was written not in C but in Scheme.
Bottom-up style was used: All needed MathLink (Mathematica
C interface) functions were raised into Scheme in a loweeray
implemented as a Scheme module. All the other parts of MrMath
ematica are written in Scheme, and the final export is ther8ehe
function MathEval. Compared with the interface providedvnth-
Link, nearly all the details about the call are encapsulated
Although the structures of S-exp and Mathematica-expoassi
are similar, the actual keywords are different. The synfasome
pre-defined functions is also distinct. To bridge the gapsé a
separate module in MrMathematica to translate expressitms
result is that a user can write expression just as a Schemanzhe
send it to Mathematica. In most cases, the output of Mathemat
can be directly feed into the Scheme functearal or used directly
as a Scheme object. The default rules in the translate table a
conservative, only dealing with the (exact) common partaifedne

tent Scheme. The recommended way to use MrMathematica is, to
do all the other programming job in Scheme, and when dealing
with mathematical concepts, call the corresponding Mattea
function using MathEval.

You can define your Scheme function that use MathEval, thus
using the power of Mathematica with almost no effort. For ex-
ample, the Mathematica function Factorinteger was raised i
Scheme, with exactly the same contract:

> (define (factorinteger n)
(eval (MathEval ‘(FactorInteger ,n))))
> (factorinteger 111111111111111111)
((32) (71) (11 1) (13 1) (19 1) @37 1)
(52579 1) (333667 1))

A more efficient version:

and Mathematica. Programmers can customize the table by new

rules.

From the example in Figure 1, we can see that MrMathemat-

ica allows every Mathematica Input-Output done in “Fullfadiof
Mathematica. So CAS users will lose no function from Mathema
ica, but get the unambiguous, aesthetically appealingcandis-

91

> (define-syntax factorinteger
(syntax-rules ()
((_ n)
(map cdr
(cdr (MathEval ‘(FactorInteger ,n)))))))

For computaion that involves algebra symol(s), explicibtgus
used. See the example about integration. To use the retlura va
Scheme, a explicit call to Scheme’s eval is needed:

> (define f
(MathEval

> (Integrate (/ 1 (+ (expt x 2) 1)) x)))
> f
(atan x)
> (define s (eval ‘(lambda (x)
> (s 0)
0

»£)))

MrMathematica is designed to avoid providing too many fea-
tures, but also to avoid weaknesses or restrictions. Fangbe
calling multiple or remote Mathematica Kernel(s) is supedr par-
allel computation is available using PLT’s thread utilithgriables
could all be put in Scheme and the quasi-quote will help feans
their values into Mathematica; Windows, Unix (includingiuk),
and MacOS are all supported; MrMathematica can render Graph
ics from Mathematica in DrScheme (this feature needs Sclagthe
Mathematica running on same machine, which needs further im
provement).

Even if your favorite Scheme implementation is not PLT, port
ing MrMathematica should be easy. There are only three point
that are not R5RS and SRFI: the Scheme to C interface, the mod-
ule system, and the Graphics renderer. MrMathematica lissisle
MzScheme”, the only official C interface for PLT Scheme v28x,
its FFI. As mentioned before, all code that deals with C is sep-
arate module whose only role is raising C functions. Chamdin
into different FFI could be done as a routine. The same to eodu
system. To render Graphics from Mathematica in DrSchemEdMr
is used. When using other Scheme implementation, you caly eas
disable this feature, just as the light-weight version oMdthe-
matica (designed for MzScheme only instead of full DrScheme
does.

5. Conclusion and Future Work

With MrMathematica, you can use whatever feature you likeegi
from Scheme or from Mathematica. The recommended method to
use MrMathematica is to do mathematical compuation in Mathe
matica and other programming in Scheme. This solves thdgrob

of major CASes: the lack of a good programming language.

Schemers can view MrMathematica as a Computer Algebra
library, or a build in term rewriting engine; Mathematicaets
can view it as a Foreign Language Interface better than that o
Java, Perl or Python (string based). After all, the two |augs
are homologous, thus making the symbiosis.

However, this is only a start of the project. To be really suc-
cessful, MrMathematica need more applications. Henceptiper.
Enjoy hacking with MrMathematica!

For more information about MrMathematica, please Wsitp :
//wuw.websamba.com/mrmathematica.

Acknowledgments

Thanks to LinPeng Huang, Matthew Flatt, and Shriram Krishna
murthi for prereading the draft of this paper.

References
[1] PLT Schemehttp://wuw.plt-scheme.org/.

[2] Stephen Wolfram. The Mathematica Book. Wolfram Medi&h 5
Edition, 2003.

92

[3] Matthew Flatt, Robert Bruce Findler, Shriram Krishnathy and
Matthias Felleisen. Programming Languages as Operatiste®g.
ICFP 1999.

[4] Richard J. Fateman. Symbolic Mathematics System Etaiaal SSAC
1996.

[5] Geddes K.O., Czapor Stephen R., and Labahn George. itiiges for
Computer Algebra.Kluwer Academic, 1992.

[6] John Gray. Mastering Mathematica. Academic Press1884.

[7] G J Chaitin. Algorithmic Information Theory. Cambridgniversity
Press, 2004.

[8] Stephen Wolfram. A New Kind of Science. Wolfram Media020

[9] Olin Shivers. A Scheme Shelhttp://www.scsh.net/docu/
scsh-paper/scsh-paper.html

[10] Aubrey Jaffer. Jacahttp://swissnet.ai.mit.edu/jaffer/
JACAL .html

[11] Maxima.http://maxima.sourceforge.net/

[12] Axiom.http://savannah.nongnu.org/projects/axiom
[13] Reducehttp://www.reduce-algebra.com/

[14] Mapple.http://www.maplesoft.com/

ACT Parameterization Framework

Alan Pavtic

AVL-AST Zagreb, Croatia
alan.pavicic@avl.com

Abstract

ACT is a generic parameterization framework used in theldeve
ment of applications for modeling and parameterizatiomtsrinal
combustion engines. It is developed in Guile. Its two mairtga
arellm core of object model built on top of Goops, aBdeeditor
environment providing Ul. The core object model supportsagie
persistence of any object to database, type guardiansfferetit
slots, nameservices and object repositories. It also stggmiding
additional modules which can change the behavior of theenti
system as well as any of its parts (e.g. undo/redo functigneke-
pendencies between objects, event notification, . ..). @iteren-
vironment for editing Ilm objects includes a library of basditors,
simple composite editors and generic editors. A gradintegysan
be used to dynamically decide which registered editor dkatise
most appropriate for editing a particular object. Every Bdior is
an Ilm object itself. High level XML descriptions of data meid
and editors can be compiled to Scheme code defining IIm dasse
and Bee editors.

Keywords Lisp, Scheme, MOP, data model, Ul, parameterization

1. Introduction

We are working for AVL, a company producing software thatsim
ulates parts of internal combustion engines. Most prodinctsir
product line are structurally similar. They all consist witmain
parts — a part which models and parameterizes some aspeats of
engine and a part which actually calculates simulationt/ésp
Each solver is typically monolithic stand-alone proces&tvheads
custom formatted data files from input stream, and after &iones
very lengthy) calculation stores the result of the simolato some
output stream to be additionally post-processed.

We will concentrate on the part which allows user to modeipar
of an engine and prepares the input data for solvers in thersys

NikSa Bosnt

AVL-AST Zagreb, Croatia
niksa.bosnic@avl.com

Obviously, we needed more expressive and more efficient sys-
tem. The first step in the implementation was the analysieof r
quirements.

In most cases, parameterization is not a very difficult thsk,
cause it can be reduced to a relatively small number of sibtic
defined classes of objects which are being parameterizatheto
tions between such objects are typically trivial, or therers con-
nections at all. Similarly, editors for such objects can aedchwrit-
ten or just partially automatized.

Sometimes requirements on parameterization can be quite se
ous. In our case, we have a project where a large number seslas
is in play, which are intensively changed during developntgn
program or can be added to system after it has already been de-
ployed.

Also, we have some non typical requirements on objects gs the
have to know how to persist and depersist themselves (sate st
to some unspecified medium, such as a file, an internet cannect
or a relational database, and be able to restore it laterattay the
program has been restarted).

Models described by our system can be quite complex them-
selves and dependencies between objects can be very spegjfic
relations between mechanic parts of car engine).

Motivated by all of the above, we decided to create a modeling
language which allows the same functionality to be addedfin d
ferent ways, depending on the estimation of applicatiorelbper,
rather than to create a rigid tool which should anticipatp@dsible
requirements on classes and relations between them.

Apart from modeling requirements, there are also requirgme
for additional changes to the functionality of objects. kginstead
of anticipating all possible ways how the behavior of objemild
be changed, we rather open a way to change the behavior of any
class or object during runtime. As we will see later, abstoas for
changing metaproperties of an object we will aidins

Similarly, the system has to be able to describe even péaticu

Such a modeling and parameterizing subsystem needs toée abl editors for particular types of objects or any other elersenit

to define and edit some particular aspects of an engine (demen
on the actual ability of the particular solver) and then hmgolver.
Previously, such a subsystem was implemented in such a \aay th
particular solvers were run from different programs writbe C++
which weren't mutually connected. This architecture waastir
cally slowing down adding new or changing existing aspetth®
engine and every change in Ul required programmer inteiment
and rebuilding of the whole application.

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Alan Pawic and Niksa Bosn.

93

Ul. The philosophy should be that the simple editors could be
generated automatically and very quickly, but if the apgilan
programmer wants to add a very specialized editor for sowrmEscl
or family of classes, that should be possible too. Such a@mbro
would guarantee us both — fast development when possibie, an
tuning anything within the system when necessary.

Finally, it would be nice if even the application itself cdube
described as a regular object which behaves like the resteof t
system.

Such a system, which couples all mentioned elements, wauld b
a parameterization framework for rapid application depeient in
any technical area, not necessarily just engine simulation

The system described is specific enough that the object model
of any typically used OO language (C++, Java, Python, .esdt
fit completely. Moreover, since we have requirements thegses
can change their behavior (e.g. an object is able to log alhghs

of its properties) no fixed object model would serve us coteple
no matter how powerful it is.

Creation of such object model from scratch would be a long an
expensive task.

Thus, we decided to use the meta object protocol (MOP)[9]
which allows us to be independent from any predefined fixeeaibj
model and gives us freedom to change the object model on the fly
as needed.

The most complete implementations of MOP can be found in
Lisp systems, so Lisp was the most obvious choice from thabeg
ning. Because, from a management perspective, the experofe
using Lisp could have failed, Lisp implementation had toree o
reduce possible losses. Because of high number of tardgénofe,
implementation also had to be easy to port. An additionalireg
ment on Lisp implementation was that the chosen implemientat
has to interface easily to C because of third party librasiesuse
(GTK+, expat, OpenGL, libuuid, ...).

We chose Guile as the Scheme implementation because it satis
fies most of our needs. It is widely used, free and easily pteta
It comes with Goops [3] — a complete CLOS-like implementatio
of MOP. Although it meets all of our requirements, decisiomuse
it is still questionabl® and implementation of the whole system
shouldn’t involve anything Guile specific on the concepteskl
so everything should be easily portable to any Lisp which d&as
complete implementation of MOP.

Goops itself has some differences from CLOS, but it is still
part of CLOS family. It has slots, generic functions, method
metaclasses similar to CLOS but it lacks proper implemanat
of method combinations.

The object system we built upon Goops is narled and the
editor system built upon IIm is namedsee ACT is the complete
architecture for application development, which alongéint Bee
containsXi — an XML editor which allows application developers
to simply draw definitions and layouts of classes and ediiics
— a compiler from Xi XML formats to [Im and Bee definitions,
and some parts more specific to area of internal combustigimen
simulation. Xi is created for the sake of more efficient agggiion
development and the fact that most of our application dper®
do not know Scheme.

d

2.
21

The basic idea of llm is to enrich Goops with new features tbut
preserve the way the object system is used. That means tiarels
be no difference between using lIm classes and using cladseb
are instances of the default metaclas3ass>.

From user’s point of view the basic difference is that a class
defined usinglefine-ilm-class macro, Which is syntactically
the same agefine-class macro. The class defined in such a way
has metaclassclass-ilm> and has classunique> added to its
list of superclasses. An additional difference is thatsslethich
do not have getter and setter names defined, will get staizddrd
names for them (prefixing "get-" or "set-" and adding "!" a&tlend
of setter name). We must enforce that access happens oabgtinr
getters and setters because for some elements of the systerk;
one may use only get/set functions to communicate with inmt&s
and should never work directly withlot-ref andslot-set!
functions. Similarly#: init-keyword is added if absent.

For example, the code:

IIm
IlIm Basics

(define-ilm-class <gas> ()
specific-heat-capacity
specific-heat-ratio

1 performance problems, bugs, module system deficiencies

94

dynamic-viscosity)

creates an llm classgas> with fully defined slots.
Above definition is expanded to:

(define-class <gas> (<unique>)
(specific-heat-capacity
#:init-keyword #:specific-heat-capacity
#:setter set-specific-heat-capacity!
#:getter get-specific-heat-capacity)
(specific-heat-ratio
#:init-keyword #:specific-heat-ratio
#:setter set-specific-heat-ratio!
#:getter get-specific-heat-ratio)
(dynamic-viscosity
#:init-keyword #:dynamic-viscosity
#:setter set-dynamic-viscosity!
#:getter get-dynamic-viscosity)
#:metaclass <class-ilm>)

The class<unique> has a single slotuid which is set to
unique 128 bit value during instance initialization. To geate that
value, the libuuid library is used.

The second class essential for the system is &tess> used for
representing references. It is a simple Goops class whictacs
two slots — the slotuid which keeps the uuid of the object the
reference points to, and the sktij which keeps the object itself.
The value of the slobbj is #£ if the target object is not loaded.

One of the basic requirements on the system is that evergtobje
must be persistable. Knowing that an object in its slot mayaio
any Scheme value including other objects or collectionspdats,
it is easy to imagine a situation where we have cycles in the
reference graph (in fact this situation is very common when t
model is complex).

Class<ref> is used for breaking the circularity during recursive
persistence of objects. When another IIm object is foundndur
traversal through object’s slots or compound values withslot,
we are persisting a reference to that other object usinguits as
the key rather than the found object itself.

When an object is instantiated or depersisted (loadedpiste
ters itself with theobject repositoryThe object repository is a weak
hash table whose keys are uuids of objects, and values aetebj
themselves. During depersistence, the system again neglyrisa-
verses through all object’s slots and values. When a referém
an object is found, the system looks for matching a objeché t
repository and puts it to the proper place. If a matching abije
not found (it is not depersisted yet), the system adds a brikie
to the hash table and stores a location which should poirtheo t
missing object. Eventually, when the missing object is &zhdll
missing links are removed from the hash table and all pcraes
set to their proper values. Such loading strategy enattgddad-
ing of instances, which is an advantage when large clusfesb-o
jects that do not have to reside in memory simultaneousld hee
be loaded. Obviously, the object repository has to be a waak h
table because if an object is not referenced by some otheciobj
(other than the repository itself), it should be collected.

2.2 Persistence

The serialization format of the persisted object does npéedd on
the database implementation and is always the same. Thanyo
allows easy implementation of persistence to a new medium.
Objects are always stored as S-expressions.
The basic writer for objects is the standard generic functio
write?, with specialized methods for a few additional classes. The
main change, with respect to standard write, is #wedf> and

2R5RS [8] thewrite procedure becomes generic function after Goops is
loaded

<unique> are written in custom syntak, (instance ...) that
stores the class name of the persisted instance and the faiisio

of #:init-keyword value pairs. This syntax is the reason why
every slot that needs to be persisted has to laveit-keyword
defined, and why Ilm will add one if omitted. Every database
implementation has to provide a port usedwxite for storing
the object.

Analogously, loading of object is implementation indepemid
Using define-reader-ctor from SRFI-10[6], #, (instance
...) syntax allows us to use the standard functiead for read-
ing from given port. If the class whose instance is being rsabt
yet present in memory, the system will look for its definitmmthe
file system and load it before instantiating the object.

For example, a persisted instance of the above clgas>
could look like:

#, (instance <gas>
#:uuid
#, (uuid "c6e93456-fef8-44df-9738-d00d£8926860")
#:specific-heat-capacity
#, (instance <ref>
#:uuid
#, (uuid "8426e7f7-1883-48a5-ab4b-43dcf94badbd"))
#:specific-heat-ratio
#, (instance <ref>
#:uuid
#, (uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))
#:dynamic-viscosity
#, (instance <ref>
#:uuid
#, (uuid "acllaf8e-0913-4a90-b16b-53b0e7903864")))

By default each bound slot with allocation typeinstance
and which hast: init-keyword will be persisted. If we do not
want to persist such slot, we can use keywrdopersist while
defining the slot. If the value of the:nopersist keyword is true,
the slot is skipped.

¢ Berkeley DB — Currently in the test phase. A hash table is used
for indexing uuids.

Regardless of implementation, an object pool should beaggrb
collected periodically; otherwise dead objects can remairit
forever. The root set for the object pool garbage colleciothie
name service

Object pools describe physical representation of the dtobe
ject. If we want to arrange objects in logical an hierarchynar
want to give a logical name to an object, we ya@me-service>.
<name-service> can be considered as analog to file systemin [Im
world. A standard way for an application to get some parécab-
ject by its name from the the object pool, is using hame servic
(using uuid is considered bad style since uuids should oalyded
internally and there is no guarantee the object will remaithie
database if it is reachable only by uuid).

<name-service> is a standard Ilm class. Therefore, it can
be persisted. Since it keeps references to other IIm objplzas-
ing another named instance efiame-service> within it cre-
ates a lower level in hierarchy in the logical sense. The root
name service always has to exist and every object pool has to
have a function for obtaining it. Typically, that functiom mamed
load-obj-from-named-source. If an object is not reachable
from the root name service or some other named source it may be
considered deadname-service> is a simple hash table.

2.3 Metaclasses, Aspects and their Applications

Every lim class is an instance of the metaclagdass-ilm>.
<class-ilm> is derived from<class>. The initial reason for
introducing additional metaclass to the base system isilutitys
to customize theinitialize method for<class-ilm>, which
allows us to change the behavior of the class we are definiiogebe
it is fully defined.

For example, Goops creates all getters and setters of a class

The storage (database) where objects are persisted is name@s instances ofaccessor-method> class. If we want to com-

object poo] regardless of how it is implemented.
A valid implementation of an object pool is any library that
satisfies the following requirements:

e it must invoke the standartkad andwrite on its own ports
while loading and saving an object

e it must support shallow loading and saving (i.e. implement
load-object andwrite-object) using standardead and
write

e it must support deep loading and saving (i.e. implement
load-object-deep andwrite-object-deep)

Such definition of the object pool provides transparentedihl
ity from trivial object pools (e.g. persistence to the chjabd used
for copy/paste) to large databases.

It is recommended that object pool implementation indexes
objects by uuid, while other indices are not required

Most object pool implementations will have a symbolic name
for their identification.

At the moment, three different object pool implementations
exist:

¢ using the file system — The database name is the directory

name, every object is in its own file named after object’s uuid
Indexing is done by the file system.

bine methods generated with getters and setters with sohee ot
methods, instances cGfaccessor-method> class are not suffi-
cient because they do not suppoetkt-method (the form needed

to combine methods). That is the reason why we replace all
<accessor-method> instances that we get from slots with reg-
ular instances ofmethod> during instantiation okclass-ilm>.

The implementation of newly created methods is taken froce-ac
sor methods.

The fact that getters and setters are regular methods is-inte
sively used by addins.

We used the ability to modify a class during its creation toan
duce several new keywords in slot definitioftsgetter-thunk
and#:setter-thunk define post and pre processing procedures
respectively which are used to modify default implementagiof
getters and setters: getter-thunk takes two arguments: the ob-
ject whose getter is invoked and the value received from éffeudt
getter. #: getter-thunk that simply returns the value received
from default implementation would be implemented as:

(lambda (obj val) val).

#:setter-thunk takes three arguments - the object, the new
value and the procedure which would be invoked by default. A
simple pass-through: setter-thunk would be:

(lambda (obj val proc) (proc obj wval)).

Slot definitions may omit thunks. One example when thunks
should be used is automatic conversion of units (model riaigr

e single file database — Used for embedding IIm databases into uses Sl units while values are provided in arbitrary unitezysse-
other formats. The database name is the file name and the indexected by user). In this case thunks would perform the univeo

is embedded in the file.

3The implementation of a query language is planned.

95

sion.
The last keyword we added for customizing slot definitions is
#:type. Itis used as type guardian for particular slot — if one tries

to assign to a slot a value of wrong type, a runtime excepton i
raised.

If a slot has both#: setter-thunk and#: type keywords, the
new value is first passed through the setter and than pratéegse
the type checker. Types can be basic types like integersingst
enumerated types (elements of a symbol list), other lImsela®r
compound types like type list and type union. A type unioowa
slot values of one of the specified types for that slot. A tyipe |
requires the value to be a list of instances of specified tigretbat
slot, properly ordered. With such compound types, any s
type can be described.

Example for canonical definition of list of integers without
macro usage:

(define int-list (make <ilm:type-union>))
(set-types! int-list
(list (make <ilm:nil>)
(make <ilm:type-list>
#:types (list
(make <ilm:integer>)
int-1list))))

and redefinition of the classgas> with a new type guarded slot
ints:

(define-ilm-class <gas> ()
(ints #:type int-list))

Types are used for better guarantee of correctness of pnoaga
well as to enhance introspection capabilities (used by ieBee
editors).

Like the ability to define classes separately from methads, i
would be nice if parts of the same class could be defined sethara
In practice, it is often a case that some property or a setager
ties is defined later on, and that it is added to definitionsoofies
already defined classes. For example, an engineer who lolescri
a cylinder cares only about slots which are related to catmns
in some particular simulation, but the clagsylinder> can have
some additional properties not necessarily related tonergjmula-
tions (e.g. the name of the author and some documentatiaoh S
sets of orthogonal properties of a class we aajpects When an
aspect is added to a class, new slots are introduced, butase ¢
doesn’t change its behavior in any other way. Every sloténdass
stores which aspect introduced it. If a slot is supporteddweral
different aspects, it contains a list of all those aspedtslifier-
ent aspects introduce the same slot with incompatiblengstiie.g.
#:init-value is different), the system raises an error.

Now <gas> has a new slohame and supports the naming
aspect.

2.4 Addins

The basic behavior of objects (e.g. persistence) is alwaythe
system. When we want to introduce some additional behafior o
an object which for some reason (memory usage, speed, psie ae
thetics, ...) doesn’t need to exist for every class or objeetare
introducing special types of modules, nanaettiins An addin can
introduce a new behavior which cannot be described by the bas
system itself.

While aspects introduce new slots and don'’t change the behav
ior of the class, addins bring new functionality to existmgthods.

Such enriching of the model with new a functionality we call
injecting. Important features of addins are that they caagmied
to any class or instance and that they can be combined. Number
of additional addins which can be added to the base system is
unlimited.

We will try to clarify addins through two examples — undofred
and dependency addin.

A system which would keep track of all changes on all slots of
every object all the time would at times be needlessly ineffic
(e.g. when it is used by some calculation which is executeah fa
script where things like undo and redo make no sense). Ortliee o
hand, the ability to execute undo and redo actions on soneisbj
and keeping track of all changes chronologically is quitkofud
to application developers, who could use the object systéhout
knowing how to implement undoing. Undo addin addressestiyxac
that issue. Even in an application that needs undo/reddifunadity
not all objects are undoable. All an application develoer to do
to have undo/redo facility in his program is to declare wiadbfects
should be undoable or declare classes whose all instanoe&ish
support that facility.

Injecting an addin means that a new class will appear in the sy
tem. The new class will be composed of two — the original cias
aclass which is introduced by the addin. Composition is dsireg
multiple inheritance. The class introduced by the addigpscally
an instance of some addin-specific metaclass, so the coohpose
class will be an instance of the addin’s metaclass too. Heree
can additionally customize the composed class inthicialize
method of the addin’s metaclass. In the undo/redo exampte, w
are traversing through all setters, modifying them to tegisl|
changes on the global undo/redo stack and to invelke -method
which in turn invokes the original setter method, specalifor

Information which aspects are supported by the class are old class to which addin was injected. That is the reason way w

stored in a slot of the metaclasglass-ilm>. The class and its
slots can be queried and filtered by different aspects. Tharana
define-class-aspect iS syntactically similar to the macro
define-ilm-class, except that it takes the name of the aspect
as its second argument. The implementation of aspectsisaligs
redefinition of a class in a way that all already existingstoe kept
and new slots are added, taking care about merging of piepeit
duplicate slots

An example of a macro for adding an aspect to a class:

(define-syntax add-name-aspect
(syntax-rules ()
((_ cls) (define-ilm-class-aspect cls #:naming
(name #:init-values ""
#:type (make <ilm:string>))))))

and usage of that macro applied to the clagss>:

(add-name-aspect <gas>)

4We are considering implementation of aspects using maliigheritance
that would enable specialization of methods by aspects.

96

had to convert all getters and setters fraatcessor-method>

to <method>. undo andredo functions are just executing closures
stored on a global stack. Of course, changes are capturgd/beh
an object is changed through a setter and the object is aanest
of an Ilm class with undo/redo addin injected.

If an application programmer knows in advance which addins
should be used, and into which classes or objects they shauld
injected, he could use the composed class hame — the nanassf cl
concatenated to the name of the injected addin. If we wanttcem
an undoable instance egas>, we would create an instance of the
class<<undo><gas>>, where<undo> is a the name of addin class.

If we want to inject an addin to an already instantiated dbjec
after its class is composed with the addin, all we have to aalis
change-class to the newly created class. Since the new class has
superset of slots of the old one, all values within old sloth w
remain untouched. Instead of invoking old methods, suclkeaibj
will have more specialized methods for setters, which agated
during composition of classes.

The purpose of the dependency addin is that slot values can be
calculated from values of other slots (perhaps from anotiter

ject) by some user defined formula. If we make one slot depen-
dent of other slots the connection will be stored in an instaof
class<dependency-descriptor>, which also stores the depen-
dency formula. Propagation of change is eager — immediatfely
ter some value is changed, the object knows whether it iy dirt
(needs updateing), but the calculation of the value is lary ia
calculates only parts it actually needs. The persistencsuoh
cluster of objects will not calculate all dirty objects befathey
are stored. Rather, it will persist current in-memory statdud-
ing <dependency-descriptor> objects. Same as in undo addin,
everything what's happening during setting of the slot gadund
during reading from a slot is definedinitialize method of the
dependency metaclasgep-mc>. Original getters and setters are
invoked usinghext-method.

When an object with an injected addin is loaded, the name of
its class is recognized as composed class and after loafloass
and addin, additional composition is performed.

For example:

(inject-addin-to-class <undo> <gas>)

will create a new class<undo><gas>> whose instance will be
persisted as:

#, (instance <<undo><gas>>

#:uuid

#, (uuid "c6e93456-fef8-44df-9738-d00df8926860")

#:specific-heat-capacity

#, (instance <ref>

#:uuid

#, (uuid "8426e7£7-1883-48a5-abdb-43dcf94badbd"))
#:specific-heat-ratio
#, (instance <ref>

#:uuid

#, (uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))
#:dynamic-viscosity
#, (instance <ref>

#:uuid

#, (uuid "acllaf8e-0913-4a90-b16b-53b0e7903864"))

#:ints (1 2 3)

#:name "air")

To ejecte an addin can from an objechange-class to the
original class can be invoked.

The list of possible addins is open ended. In addition tcealye
described addins we implemented an event addin which makes a
object notify its listeners when any of its slots change. lBmen-
tations of a locking addin which would replace proper setteith
dummy setters and debug addin which is able to log all changes
within the system are planned.

3. Bee
3.1 Bee Basics

For a complete solution of the parameterization problenartap
from the data model we also needitors— Ul components ded-
icated to the interactive modification of objects. The pdrbor
system addressing the task of editing Ilm objects is caled.
Altough Bee does not limit the choice of Ul library, all cuntby
created editors are implemented using GTK+ [4].

Every Bee editor is an llm object itself. That approach eftlga
solves persistence of editors (i.e. Ul state), depends@aveen
editors etc. Additionaly, it also enables creation of med#ors
(Bee editors designed for creation and modification of Beie ed
torsf. Furthermore, since Ilm permits modeling of the data meta-

5short for "Bee is areditor environment”

6This possibility is not employed in its full strength in thareent imple-
mentation.

97

model, Bee editors are also used for editing the data maoskf it
i.e. llm class definitions.

An additional source of flexibility of Bee editors is a classi
Lisp pattern where an editor accepts a procedure (commaosiyaj
simple lambda expression) as a value of a parameter thafispec
or specializes its behavior. Examples of problems solveslioh a
way are definition of arbitrary hierarchy in the generic tesktor
(children of a tree node are returned by a procedure given as
a parameter, effectively solving filtering and orderingojland
naming of an entity (name is generated depending on the xtonte
and/or translated to the given language).

Since an editor is fully defined just by defining six state-
changing actions upon it, a short description of the lifeleyaf
an editor (shown in figure 1) is necessary.

save
turn-on load O
/\ /\
‘ ‘ loaded
v _/
turn-off unload U
reload

Figure 1. Editor state diagram

¢ The stateffis the starting and the ending state. An editor in that
state exists as an llm object but it still (or again) doesaté
any Ul representation. This state is introduced to enablapna
ulation of properties of the editor which must be defined keefo
the widget (or widget hierarchy) that makes up the editot’'s U
is created.

In the stateon, the static part of the editor’s Ul representation is
created but it is not visible. The static part of Ul repreaéinh

is the part that can be created without knowing exactly which
object will be edited and it includes at least the main widget
of the editor. We can add an editor in this state to some parent
widget and by doing so we can build Ul to be shown later all at
once.

The statdoadedis the "working” state of the editor. Before the
editor can enter this state, the object to be edited musttb&ke
representation exists in full and is visible, and the egiemmits
interactive modification of the object.

Actions turn-on, turn-off, load and unload switch states of an
editor. All transitions shown on the state diagram are adid\e.g.
off-on-loaded-on-loaded-on-off) so the same editor carubed
multiple times for editing (even editing different objectithout
repeated construction and destruction of the static paitsofl
representation.

Each action is implemented as a Goops method that can be in-
voked by the owner of the editor. Bee provides a simple eméédd
language(7] for defining editors:

e specialize-ed-class macro defines an editor class (using
define-ilm-class) and overrides the default initial values for
slots inherited from its base classes.

e Macrosdefine-turn-on, define-turn-off, etc. simplify
the definition of appropriate methods, provide error chegki
and ensure state consistency.

3.2 Basic Editors and Simple Composite Editors By convention, more specific editors are given higher grades
Basic editorscover editing of "atomic” objects and serve as build- A NoN-Specific "last-resort” editor intended primarily fose by
ing blocks for construction of complex editors. Typical myges application developers can be used for any location butayée
of basic editors are editors for strings, numbers, enuraeraal- grade. On the other hand, an editor created for a specifiowarr
ues, Boolean values, tabular functions, physical quastita pair category of objects (likegas-ed> below) gets much higher grade,
of a number and a unit from given unit group) etc. Althoughteac Ut under more selective conditions.
basic editor must be manually codethe embedded language de-) .
scribed above greatly reduces the effort. 3.4 Generic Editors

For example, the complete definition of an editor for real Aum The concept of graders opens a door towagdseric editors

bers is: Generic editors use simple composite editors as contaimels
(specialize-ed-class <real-ed> (<gtk-ed>) layout managers for editors created according to the eetithe
(layout-hints ’ (#:hflexible #:small))) grading of part$ of the object being edited. The simplicity of this
process enhances scalability with respect to the numbdas$es
(define-turn-on (ed <real-ed>) in the data model and the number of editor classes in therayste
(set-widget! ed (make <gtk-entry>))) along with resilience regarding data model changes. Furtbee,

generic editors enable work on the data as soon as the da& mod

define-turn-off (ed <real-ed> > WO
(define-turn-off (ed <real-ed>)) is finished or even during its development.

(define-load (ed <real-ed>) For example, figure 2 depicts an instance <hi-ed>, a
(gtk-widget-set-sensitive (get-entry ed) generic editor that uses the described grading and theesingl
(not (read-only? ed))) column composite editor, editing an instance of the cigas> de-
(load-text ed)) fined with the appropriate slot type informaticruni-ed> grades
each slot of the given object, selects the editor class Wwithigh-
(define-unload (ed <real-ed>) . est grade if any, and adds an instance of the selected elitsrto
(gtk-entry-set-text (get-entry ed) "")) a single-column composite editor serving as a containeiamit
(define-save (ed <real-ed>) manager.
(unless (read-only? ed)
(set-obj! ed _ o ;
(string->real (gtk-entry-get-text specific-heat-capacity L“”“ > |0 _Jilimid
(get-entry ed)))))) (o]
& v specific-heat-ratio | T-thl = | m |
(define-reload (ed <real-ed>) — e
(load-text ed)) dynamic-viscosity | p-T-thl s | | =3} |
(define (load-text ed) nams |
(gtk-entry-set-text (get-entry ed)
(real->string (get-obj ed)))) - - -
Figure 2. A generic editor
(define get-entry get-widget)
Simple composite editorgroup several (often basic) editors With some minimal specialization generic editors can often
into one whole. Layout creation algorithms have accedaytout replace complex editors built manually by gradual compasiof

hints a way for a child editor to express its properties regarding basic editors:
layout. While the current version of Bee includes only a deanp
single-column composite editor, a table composite edgamder
development.

(specialize-ed-class <specific-heat-capacity-ed>
(<multi-type-ed>)
(slot-namer (make-alist-namer

. >((const . "Constant")
3.3 Grading (T-tbl . "Table (T)")
To any editor class we can attach one or mgnaders— procedures (p-T-tbl . "Table (p,T0")))))

that, based on properties of the location we want to edit @-g (registry-add-class-type-grader
lowed types of objects, type of the object currently storetha :sPec??c:ieaz:caPac?tyi & 13)
location, read-only flag, ...), give a numerical measureavi Ap- speciticTheatmcapacityme

propriate an instance of the editor class would be for eglitirat ;33 omitting similar specialization code for specific

location. That way we can make the decision about the most ap- ;. .. neat ratio and dynamic viscosity editors
propriate editor class dynamically, without the expliaitbkviedge
about all editor classes in the system and their requiresnent (specialize-ed-class <gas-ed> (<uni-ed>)
One appropriate grader for the real number editor classidmel (heading "Gas")
registered as: (slot-namer
(make-alist-namer

(registry-add-type-grader

(lambda (type) >((name . "Name")
(and (or (is-a? type <ilm:real>) (eq? type <real>)) (specific-heat-capacity ."Specific Heat Capacity")
(cons <regl—ed> 11))5) ’ (specific-heat-ratio . "Specific Heat Ratio")
(dynamic-viscosity . "Dynamic Viscosity")))))
A later call to a query function such asgistry-grade-type (registry-add-class-type-grader <gas> <gas-ed> 13)

would include a pair of the editor clagseal-ed> and the grade

11 in the returned list if the type given satifies the abovedition. The specialized generic editogas-ed> is shown in figure 3.

" as opposed to automatically generated 8typically non-virtual instance slots

98

Gas

Specific Heat Capacity | Constant & | [0.01 kim~3
5 pacific Haat Ratio Tabla (T o | |S|
Dynamie Viscosty Tabla (p,T) > | l%'
Mama | }j.ydrqgen i

Figure 3. A specialized generic editor

4. Related Work

ASL's [10] components Adam and Eve2 treat problems that are
similar to those treated by llm and Bee, respectively. Weidcavo
the multiple language approach (C++ for the implementaidi
braries, AEL for data and dependency expressions, AVM fer th
interpretive runtime execution) by using Scheme for albpaeter-
ization purposes.

Cells [1] and Cells-Gtk [2] combined also provide a flexible
Lisp based parameterization framework.

5. Conclusion

The initial predevelopment experiment was successful éed a
short additional development phase we are about to stantdeit
ployment, proving once again that Lisp and MOP should beidens
ered in commercial programming at least equally to C++ oaJav
Problems we encountered using Lisp weren't of conceptuakrea
and mostly were related to the selection of a good implentienta
that covers our specific requirements.

References
1
2
3
[4
[5
[6
[7
8

Cells http://common-lisp.net/project/cells

Cells-Gtk http://common-lisp.net/project/cells-gtk

Goops http://www.gnu.org/software/guile/docs/goops

GTK+. http://www.gtk.org

Guile. http://www.gnu.org/software/guile

SRFI-10 http://srfi.schemers.org/srfi-10/srfi-10.html

Paul GrahamOn Lisp Prentice Hall, 1993.

Richard Kelsey, William Clinger, and Jonathan Rees {&d).
Revised(5) Report on the Algorithmic Language Scheme
http://www.schemers.org/Documents/Standards/R5RS
[9] Gregor Kiczales, Jim des Ries, Daniel G. Bobrovihe Art of the

Metaobject ProtocolThe MIT Press, 1991.
[10] Sean Parent, Foster Breret@werview of Adobe Source Libraries
http://opensource.adobe.com/growgsL_overview.html

99

100

Javascript to Scheme Compilation

Florian Loitsch

Inria Sophia Antipolis
2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

Franc
Florian.Loitsch@so

ABSTRACT

This paper presents Jsigloo, a Bigloo frontend compilingdeript

to Scheme. Javascript and Scheme share many features:rboth a
dynamically typed, they feature closures and allow for fiors

as first class citizens. Despite their similarities it is abwvays
easy to map Javascript constructs to efficient Scheme codena
this paper we discuss the non-obvious transformationsngeded
special attention.

Even though optimizations were supposed to be done by Bigloo
the chosen Javascript-Scheme mapping made several aaalgke
fective and some optimizations are hence implemented giodsi
We illustrate the opportunities Bigloo missed and show hber t
additional optimizations improve the situation.

1. Introduction

Javascript is one of the most popular scripting languagattadle
today. It was introduced with Netscape Navigator 2.0 in 120l
has since been implemented in every other dominant webdenow
As of today nearly every computer is able to execute Ecnyatscri
(Javascript’s official name since its standardization [91LB97),
and most sophisticated web-sites use Javascript.

Over the time Javascript has been included in and adapted to
many different projects (eg. Qt Script for Applications, dfa-
media’s Actionscript), and it is not exclusively used forhwe
pages anymore. Most of them are interpreting Javascripgdie
are already compiling Javascript directly to JVM byte codg. (
Mozilla’s Rhino [5] and Caucho Resin [4]).

Javascript is not easy to compile though. Several of itsgrop
ties make it challenging to generate efficient code:

e Javascript is dynamically typed,

e functions are first class citizens,

e variables can be captured by functions (closures),
e it provides automatic memory management, and

e it contains areval function, which allows one to compile and
run code at run-time.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Florian Loitsch.

101

e

phia.inria.fr

Scheme has similar features, and Scheme compilers are faced
with the same problems. Contrary to Javascript much rekearc
has been spent in compiling Scheme, and there exists saferal
ficient Scheme compilers now. By compiling Javascript toeboh
it should hence be possible to benefit from the already ptegen
timizations. Bigloo, one of these efficient compilers, hias $up-
plementary advantage of compiling to different targetsaddition
to C, it is capable of producing JVM bytecode or .NET’s CLI. A
Javascript to Scheme compiler would hence immediately nitake
possible to run (and interface) Javascript with these tbiséorms.

When we started the compiler we expected to have the foligwin
advantages over other Javascript compilers:

e The compiler should be small. Most of Javascript's features
exist already in Scheme, and only few adjustments are needed

The compiler should be easy to maintain. A small compiler is
easier to maintain than a big, complex compiler.

The compiler should be fast. Bigloo is fast, and if the trans-

lated code can be optimized by Bigloo, the combined compiler
should produce fast code. An efficient Javascript to Scheme
compiler does not need to create efficient Scheme-code, but
code that is easily optimized by Bigloo.

e Any improvement in Bigloo automatically improves the Java-

script compiler. New optimizations are automatically aggko
the Javascript code, and new backends allow distributialifto
ferent platforms.

e Javascript code could be easily interfaced with Scheme knd a
languages with which Bigloo interfaces.

Many existing Javascript compilers or interpreters alydfadtured
some of the listed points, but none combined all these adgast
Our compilerJsigloq takes Javascript code as input, and trans-
lates it to Scheme code with Bigloo extensidnghich is then op-
timized and compiled to one of the three platforms. Furttogem
it is planned to integrate Jsigloo into Bigloo (as has beamedor
Camloo [16]) thereby eliminating the intermediate Schéditee-
Section 2 will detail the differences between Javascrigt an
Scheme. In Section 3, the chosen data-structure mappintypnd
ing issues are discussed. Section 4 describes the codeatiener
and how encountered difficulties are handled. Some predirgin
performance results are given in Section 5. Section 6 shdwys w
Jsigloo is not yet finished and what needs to be improved in the
future. Finally, Section 7 concludes this paper.

1Most of the used extensions increase Bigloo’s efficiency emad be
either omitted or replaced by equivalent (slower) Schenpeessions.

2. Javascript vs. Scheme

Javascript and Scheme share many features, and this sagliion
therefore concentrate on their differences rather tharlagitres.
Even though Javascript is generally considered to be arcioje
ented language, it bears more resemblance to functiongliéayes
like Scheme than to most object oriented languages. In faet-J
script's object system is based on closures which is a fedyi-
cally seen in functional languages.

Javascript's syntax resembles Java (or C), and even reader

without any Javascript knowledge should be able to follow th
provided code samples.

2.1 Binding of Variables

In Scheme, new variables can only be created within certain e
pressions (edLet anddefine) which ensure that every variable is
defined. Javascript however is more flexible:

¢ Globals do not need to be declared. They can be defined within
the global scope (using the same syntax as is used for local

variables in functions), but it is also possible to decldrent
implicitly when assigning an undeclared varigbl€he inverse

- reading from an undeclared variable - is not possible and
throws an exception.

A variable declarationfar x;) allows one to declare variables
anywhere in a function. The variable is then setitalefinedat

the beginning of the function. Most languages provide bdock
to limit the visibility of variables whereas in Javascripotks

do not influence the scoping. But even more surprising the
declaration also affects all previous occurrences of timesa
symbol. In theory one could put all variable-declaratiomsi
block at the end of a function.

This flexibility comes at a price though. When variables shar
the same name it is easy to accidently reference the wronahles
and produce buggy code. The following example containsrakve
common mistakes.

1: var x = "global"; // global wvariable
2: function £() {

3: x = "local"; // references local z
4: var someBool = true;

5: var x = 2;

6: some_bool = false; // oops.

7: if (someBool) {

8: var x = 1; // references same w
9: }

10: return x;

11: }

12: £Q); /) => 1

A8 538 // => "global"

14: some_bool; // => false

Due to the local declaration afin line 5 and 8 the assignment
in line 3 does not change the global but the local one. Line
6 contains another annoying bug: instead of changing the loca
someBool a new globakome_bool is created and set ttalse.

From a compiler’'s point of view these differences are mostly
negligible though. Only the automatic assignmentnoélefineds
of concern, as it makes typing less efficient.

2.2 Object System

Whereas Bigloo uses a CLOS-like [6] object system, Javaiscri
adopted a prototype based system [13]: conceptually abpmet
ordinary hash tables with an attached prototype field. When-
ever a property (Javascript's synonym for "member”) is read
(obj.property or obj["property"l) the object's hash table

2Note, there exists a third method involving the "global altje

102

is searched for this entry. If the hash table contains thpgatg the
value is returned otherwise the search recursively coasirmn the
object stored in the prototype-field. Either the member enév-
ally found, or the prototype does not hold an object, in whiake
undefinedis returned. Writing on the other hand is always done
on the first object (ie. the prototype is completely ignoréfi)he
property did not already exist it will be created during thetev
Methods are just regular functions stored within the object

Fvery procedure implicitly receives #his argument, and when

called as methodopj.method() or obj["method"]()) this
points to the object (as in ling of the next example). If a function
is called as non-method (ling the this-argument is set to the
global objectwhich represents the top-level scope (containing all
global variables and functions).

function £() {
print (this);

£0O; // ’this’ in f becomes the global object
var o = new Object();

o.f = f;
0.f0);

N O Lo

// ’this’ in f becomes o

In Javascript all functions are objects, and while function
vocations usually do not access the contained properties, t
prototype-property is retrieved, when functions are used as con-
structors. Indeed, constructors too are just functions @mahot
need to be declared differently. An object creation is ireaky
the construchew Fun(), which is decomposed and executed in
three steps:

e Javascript creates a new object.

e it retrieves therototype-property out of the function object’s
hash table (which is not necessarily identical to the pygpiet
field of the same object), and stores the result in the prpesty
field of the newly created object.

e it runsFun as if it was invoked as a method on the new object,
hence allowing to modify it.

Even though the previous description is not entirely coneple
(we intentionally omitted some special cases), it is ndidadift to
show that prototype-based object-systems allow most (ifatip
usual Smalltalk [11] or CLOS operations. In particular iritence,
private members or mix-ins [10] are easily feasible. Irdezd read-
ers are referred to [7] for a more in-depth discussion ofskavat's
object-system.

2.3 Global Object

Simply spoken, theglobal objectrepresents the scope holding
all global variables (including the functions). What diffatiates
Javascript from many other languages is the fact, that this o
ject is accessible to the programmer. It is hence possibiedd-
ify global variables through an object. Interpreters synmuse
their Javascript-object structure for all global variahlé/henever
needed they just provide a pointer to this structure. Howéwe
an optimizing compiler the global object is a major obstatlee
following example demonstrates how the global object thaa
simple optimizations like inlining.

: function g() { /* do something */ }
function f(o) {

o.g = undefined;

g0

DOLOPE

Suppose the given functions are part of a bigger progranc+un
tion £ is calling the global functior. If g is never changed (eg.

= some_value;), which is usually easy to detect, a good compiler then possible to statically determine all locations andrervnents
could inlineg. In Javascript it is however more or less impossible to of eval.
be sure thag is never modified. Even the object passed would
be the global object, anficould changg. As pointer-analysesare 3 Data structures and Types
generally very costly and compute only conservative apprax) o .))
tions, tracking the giobal object is not an option. The Javascript specification defines six typesidefined Null,

It is not even possible to avoid the use of global objects (as Pooleans, strings, numbers and Object. This section pesea
should be done with theith-construct). The global object is ac- chqsgn representation of these types in the compiled cagte- J
cessed by two ways: it is assigned to the s variable in the global ~ SCript's strings and booleans are directly mapped to thehegie

scope (easily avoidable), but it is also passed to everytiamcall, counterparts. As reimplementation of Javascript's nusibesuld
where it becomes thehis-variable. Exceptions are all method- have been too slow and too time-consuming, numbers are Mappe
calls where the global object is replaced by the object orchvtiie to Scheme doubles. This representation does not conforineto t
method is executed (Section 2.2 shows an example). ECMA specificatiofi, but the differences are often negligiblén-
definedand Null are both constants and currently represented by
2.4 Variable Arity Functions Scheme symbols. Asull is generally used for undefined objects

we might replace it by a constant object in future versionisajfloo
to improve typing.

Javascript objects however could not be mapped to any jprémit
Scheme (or Bigloo) type. In Javascript properties can be@ddd
removed to objects at run-time, and Bigloo’s class-systeasaot
allow such modifications. As a result a Bigloo class0Object has
been written that represents Javascript objects. It cot@mihash
table as container for these dynamic properties and a ppEeot
field which is needed for Javascript’s inheritance. Sevasabci-
ated procedures simulate Javascript's property accesskedaxa-
script's objects are now directly mapped to tiee-0bject and its
ethods.

Javascript functions are objects with an additional field-co
taining the Scheme procedure. In our cakeFunction is a
Bigloo class deriving fromJs-0Object, where a new fieldfun
holds the procedure. A function call gets hence translatenl a
member-retrieval {ith-access) followed by the invocation of
the received procedure. Figure 1 shows the two classes a&nd th
js-call-function executing the call. (a description tiis-var
andarguments-vec is found in Section 4.4).

Scheme and Javascript both allow variable arity functibostheir
approach is quite different. Scheme procedures must ékypkd-
low supplementary parameters, whereas Javascript fursctoe
automatically prepared to receimaynumber of arguments. Even if
a function’s signature hints several parameters, it cdirbstcalled
without passing any argument. The missing values are aticoma
cally filled with undefined

1: function f(x) { print(x); }
2: £0; // => prints "undefined"

If the procedure needs to know the actual number of passedm
arguments, it can access theguments-object which is available
within any function. Not only does the propergize hold the
actual number of parameters, it also contains a referenegl to
argumentsarguments [n] accesses theth argument. Variables
in the function’s signature are just aliases to these entiide
following example demonstrates the usesguments. It will print
2, 3 and finally2:

1: function f(x) {
2: print (arguments.size); // => 2 1: (class Js-Object
3: x = 3; // modify first argument 2: props ; hashtable
4: print(arguments[0]); // => 3 3: proto) ; prototype
5: print(arguments[1]); // => 2 4:
6: 5: (class Js-Function::Js-Object
7. £(1, 2); 6: fun::procedure) ; field of type procedure
s
. 8: (define-inline (js-call fun-obj this-var arguments-vec)
2.5 Eval Function 9: (with-access::Js-Function fun-obj (fun)
. . . 10: fun this- -
Scheme and Javascript both have thel function, which al- (fun this-var arguments-vec)))
lows to compile and execute code at runtime. They do not wse th
same environment for the evaluation, though. Scheme deedd- Figure 1. Javascript's objects and functions are mapped to Biglosset
veloper the choice between thaill-environmentScheme-report-
environmenbr thelnteraction-environmenTheNull-environment Javascript is dynamically typed and variables can holdesbf

andScheme-report-environmeate completely independent of the different types during their lifetime. Most of the time pragimers
running program and an expression evaluated in them wilhgdw do not mix types though, and it is usually possible to deteen

yield the same result. The optionalteraction-environmentow- small set of possible types for each variable. Bigloo alyeper-

ever allows to interact with the running program. The vigijpof forms an efficient typing analysis [15], but it cannot difatiate

this environment is usually restricted to the top-levelaf tunning Javascript types that have been mapped to the same Scheene typ
program, and it is certainly independent from the locatidrere (undefinedndnull become both symbols, objects and functions are
eval is executed. both translated to Bigloo objects). Bigloo lacks Javasespecific

Javascript, on the other hand, uses the same environment inknowledge too. Depending on the operands some Javascept op
which theeval function is executed. The evaluated code has hence ations may return different types. One of these operatisriaé

access to the same variables any other statementat4iés loca- +-operator. If any operand is a string the result will be angfroth-
tion would have. To ease the development of Javascript derspi erwise the expression evaluates to a number.

the standard gives writers the choice to restrict the useraf to As a result Jsigloo contains itself a typing pass. Contrary t
the formeval(. ..) (disallowing for instance.eval(...)) and Bigloo Jsigloo only implements an intraprocedural analyssem-
to forbid the assignment afval (making f=eval illegal)). It is bling the implementations found in “Compiler Design Impkm
3The standard is rather unclear about what this environnesilyrrepre- 4 Javascript requires -0 and +0 to be different, which is natspie with
sents. any Scheme number type irPRS.

103

tation” [14], Chapter “Data-Flow Analysis”. This choice pines
that parameters need to be typeddp (i.e. an abstract value de-
noting any possible type) as is the case for escaping vasaht
every function-call the types could change and they neee teeb

to top. Despite these two restrictions the typing pass is ablefe ty
most expressions to some small subset. As we will see J@vascr
does many automatic conversions, and restricting the sgpenly

a little helps a lot to reduce the impact of them.

4. Compilation

Similar to Bigloo Jsigloo is decomposed into several smalle
passes, which respectively execute a specific task. Thisptrs

of the section will provide a small overview over Jsiglooista-
tecture. The remainder of the section will then focus on thaec
generation. The generic case is handled first, speciabyedecon-
structs are then discussed separately. Primarily Scheregh
constructs likewith (Section 4.3) andwitch (Section 4.2) are
examined in their respective subsections, but the impbftarc-
tion compilation has its own area (Section 4.4), too. Whenev
generated code is dependent on previous optimizations We wi
revisit the concerned passes.

A first lexing/parsing pass constructs an abstract syntes tr
(AST) composed of Bigloo objects representing Javasciipt- ¢
structs. Bigloo uses a CLOS like object system and it is hpose
sible to create procedures that dispatch calls accorditigtotype.
Jsigloo does not use any other intermediate representatiwr
than this AST. Passes just modify the tree or update therirdor
tion stored in the nodes.

An early expansion pass then removes some syntactic sugar

and reduces the number of used nodes. Immediately afteswlzed
“Symbol” pass binds all symbols to variables. The followjragss
continues the removal of syntactic sugar. The optimizapasses
and typing is then executed before Jsigloo reaches the hdcke

The code generator still receives an AST and a simplified
version just needs to transform recursively the nodes tei@eh
expressions and definitions. Ignoring the previously noerdl
special cases and some last optimizations this transfarmét
straight-forward. Jsigloo just recursively dumps the rodes-
ing generic functions and methods which are dispatched ac-

one being the transformed expression). The macro then atitom
cally discards all impossible configuratiéns

Similar _typed-macros are used in many other places. Even
though properties of Javascript objects are always retectiy
strings ebj . prop is transformed int@bj ["prop"]), the expres-
sion within the brackets can be of any type. Javascript fbeze
performs an implicit conversion to string for every accdss. in-
stance th@ in obj [0] is automatically converted int®". obj [0]
andobj ["0"] reference hence the same property. The conversion
is in this case performed by the>string_typed-macro which
reduces the tests as much as possible. Another implicitsceion
is executed for numeric operators which convert their ap#sao
numbers {>number_typed). Generally every conversion has its
_typed pendant which is used whenever possible.

1: (define-method (generate-scheme b::Block)

2 (with-access: :Block b (elements)

3: ¢ (begin

4: #unspecified ; avoid empty begin-blocks
5: ,@(map generate-scheme elements))))

6

7: (define-method (generate-scheme iff::If)

8: (with-access::If iff (test true false)

9: “(if , (js-boolify-generate-scheme test)

10: , (generate-scheme true)

11: , (generate-scheme false))))

12:

13: (define (generate-indirect-call fun this-arg args)
14: ; JS ensures left-to-right evaluation of arguments.
15: (if (or (null? args) ; 0 arguments

16: (null? (cdr args))) ; 1 argument

17: ‘(js-call ,fun

18: sthis-arg

19: (vector ,@(map out args)))

20: (let ((tmp-args (map (lambda (x)

21: (gensym ’tmp-arg))
22: args)))

23: ‘(let* (,@(map (lambda (tmp-name arg)

24: (list tmp-name

25: (out arg)))

26: tmp-args

27: args))

28: (js-call ,fun

29: ,this-arg

30: (vector ,Qtmp-args))))))

Figure 2. the generate-scheme-code methods for some selected
nodes.

cording to the type of their first argumendeff ine-method). Some Javascript constructs need more than just these minor
Figure 2 contains the implementations of the generic method agjustments though. In particulasitch, with and even the well
generate-scheme for theBlock andIf nodes as well as the pro- knownwhile do not have corresponding Scheme expressions. Due

ceduregenerate-indirect-call used for creating unoptimized
function calls.

to various optimizations, functions too are not directlypped to
their Scheme counterparts and are therefore discussec pasase

Javascript and Scheme are very similar, and this can be seerngphsection.

at this level: many implementations génerate-scheme just re-
trieve the members of the nodei¢h-access), transform them,
and plug them into escaped Scheme lists. Most of the time only
minor adjustments are needed. The-method at line9, for in-
stance, needs to boolify the condition expression firstt Than
Javascript Onull, undefined and the empty string are also con-
sidered to befalse, and conditional expressions need hence to
test for these values. As we already know the type (or a super-
set of possible types) of every expression, some of thete dan

be discarded at compile time. Instead of generating adajuted

for every boolify-expression Jsigloo uses macros. This s@ye
complexity is moved outside the compiler itself into thetione li-
brary. Macros are still evaluated at compile time, but nowhimi
Bigloo. The js-boolify-generate-scheme function retrieves

all possible types of the given expression and passes théheto
js-boolify_typed macro (figure 3) as second parameter (the first

104

4.1 While Translation
The straightforward intuitive compilation of

1: while(test) body

to
1: (let loop O
2: (if test
3: (begin
4: body
5: (Loop))))

5The actualjs-boolify_typed in the Jsigloo-runtime even removes the
test for the type, if the expression can only have one siiygle.tThe given
code sample also misses some other object-tests.

1: (define-macro (js-boolify_typed exp types) 1: (lambda (x)
125 (let ((x (gensym ’x))) 2 (bind-exit (return)
&s ‘(let ((,x ,exp)) &g ; do something
A8 (cond 4 (return result)))
Bs ,@(if (member ’bool types)
9 ,E)()(b”lean? 23)) All these examples are based on theturn statement, but
Py ,0(if (member ’undefined types) similar examples exist with theontinue keyword of thewhile
9: “(((eq? ,x ’undefined) statement.
10: O’)*ﬁ) Our optimization relies on two observations:
11: Y
8 ,@(if (member ’null types e |f an if-branch does not finish its execution but is interrupte
12 @(if (member ’null types) If an if-b hd t finish it tion but terrupted
;j ((;;;; ,x ’null) (break, continue, return Or throw) any remaining state-
. : ments following theif can be attached to the other branch o
o o) ts foll theif be attached to the other b h of
16: ,0(if (member ’string types) theizf’.
17: “(((string? ,x) . .))
18 (zoill(ftriigﬂ 2D * Any invocation of the escaping closure, directly followecthe
19: *(O) end of the surroundingind-exit is unnecessary and can be
20: ,@(if (member ’number types) removed.
21: ‘(((number? ,x)))))
22: (not (=f1 ,x 0.0)))) The first observation allows to transform the first exampte:in
23: *0)
24: (else #t)))))

1: (lambda (x)
2 (bind-exit (return)
- . 3 (if (eq? x ’null)
Figure 3. js-boolify_typed used the calculated types to optimize the 4: (return ’undefined)
5:
6

conversion. ;do something
)))

misses an important point: loops in Javascript can be inpéed Under the assumption that theturns have not been used
(break) or shortcut €ontinue). These kind of break-outs require ~ €/Séwhere in the code, alind-exits can now be removed thanks

eithercall/cc (or similar constructs) or exceptions. Jsigloo uses 0 the second rule:
Bigloo’s bind-exit, a call/cc that can only be used in the

; ; 1: (lambda (x)
dynamic extend of its form: 5 al?ifa(e; x ’null)
3: " undefined
1: (bind-exit (break) 4: ;do something
2 (let loop O 5:)
3 (if test
4: (begin L .
5 (bind-exit (continue) é ’ ((ii(f) ::Zithlng
6 (body)) S o
7 (Loop))))) Jig >thing)
In the current Bigloo version non-escapibgnd-exits are
1: (lambda (x)

not yet optimized thoughand a bind-exit removal pass has been 2

; do something

implemented. 3: result)
We usecbind-exits notjustin loops, but also for theritch-
breaks (see next section) or the functiosturns. In certain cases This optimization removes all but ondnd-exit from the 33

there is no easy way of avoiding them, but the following tfanrs bind-exits found in our test-cases and benchmarks.
mations are able to remove most of them. The following thase-s
ples represent some cases where our analysis allows tatieni 4.2 Switch Construct

bind-exits. Javascript'sswitch statement allows control to branch to one
of multiple choices. It resembles Scheme'sse and cond ex-
1: (lambda (x) . hich th A il it
2. (bind-exit (returm) pressions, which serve the same purpose. As we will seéenei
3: (if (eq? x ’null) (return ’undefined)) of them has the same properties as the Javascript consingt,
4: ;do something switch therefore need to be translated specially.
o8 W Javascript permits non-constant expressiotaae clauses and
in the following exampleexpril, expr2 and expr3 could thus
1: (bind-exit (return) represent any Javascript expression (including funatelts):
2: ; do something
3: (if test ’ 1: switch (expr)
4: (return an?{) 2: case exprl: bodyl
5: (return ’thing)) 3: case expr2: body2
6:) 4 default: default_body
5 case expr3: body3

6Bigloo’s bind-exit supplies a closure, which, when invoked, unwinds

the execution flow to the end dfind-exit’s definition (not unlike excep- It is therefore not possible to mapitch to Scheme'scase

tions caught by aatch). Jsigloo uses only a small part bind-exit’s which only works with constants. Scheme’snd, on the other
functionality. The supplied closure never leaves the eunpeocedure, and

in this case invocations of bind-exit can be transformed &itnplegotos. 71f neither branch finishes normally, the remaining statememe dead
Future versions (post 2.7) of Bigloo will contain such animitation. code, and can hence be removed.

105

hand, evaluates arbitrary expressions, and if it was nofldwn-
script’s “fall-throughs”, aswitch statement would be easily com-
piled into an equivalentond expression:

(let ((e expr))
(cond
((eq?
((eq?
((eq?
(else

exprl e) body1l)
expr2 e) body2)
expr3 e) body3)
default_body))

DOOPE

As itis, a case-body falls through and continues to exedge t
body of the next case-clause (unless, of courgs;dtks out of the
switch). To simulate these fall-throughs Jsigloo wrapstibdies
into a chain of procedures. Each procedure calls the foligwibdy
at the end of its corps and hence continues the control-flaiveat
beginning of the next clause’s bodteaks are simply mapped to
bind-exits and are not yet specially treatéd.

The following code demonstrates this transformation aojiio
our previous example:

1: (bind-exit (break)

2: (letx ((e expr)

3: (cond-body3 (lambda () body3))
4: (cond-default (lambda ()

5: default-body

6: (cond-body3)))
e (cond-body2 (lambda ()

8: body2

9: (cond-default)))
10: (cond-bodyl (lambda ()

11: body1l

12: (cond-body2))))
13: (cond

s ((eq? exprl e) (cond-bodyl))

15: ((eq? expr2 e) (cond-body2))

16: ((eq? expr3 e) (cond-body3))

17: (else (cond-default)))))

Even though Javascript's default clause does not need toebe t
last clause, it is only evaluated once all other clauses haea
tested. It is therefore safe to use @wnd’s else-clause to invoke
the default body, but care must be taken to include its bodiien
correct location of the procedure-chain.

4.3 With Statement

The access to the properpyrop of a Javascript-objectsbj is
usually either done by one of the following construefsj . prop
orobj ["prop"]. A third construction, theith-keyword, pushes
a complete object onto the scope stack which makes all cwdai
properties equivalent to local variables. Within intetpre this
operation is usually trivial. The interpreter just needsréose
the Javascript object type as representation of a scopen\ihe
encounters aith it pushes the provided object onto their internal
scope-stack. Compilers do not use explicit scope objectsgth,
and pushing objects onto the stack is just not feasible.

Moreover, an efficient compilation of theith-statement is
extremely difficult. As Javascript is a dynamically typeddaage
it is not (always) possible to determine the type and henee th
properties of therith-object. Even worse: Javascript objects might
grow and shrink dynamically. It is possible to add and remove
members at runtime. The following code shows an exampleavher
a variable within a closure references two different vddaleven
though the same object is used.

8The current transformation has been implemented followisgggestion
of a reviewer, and it was not possible to remove Bhad-exits in this
short time-frame.

106

1: var o = new Object();
2: function f(x)

&8

4: with(o) {

5: return function() { return x; };
6: }

s

8: g =1£(0);

9: g0 // => 0;

10: o.x = 1; // adds z to o
11: g0 /) => 1;

During the first invocation (lin®) of the anonymous function
of line 5 the o object does not yet containand the referencexdis
hence the one of the functidn After we added to o another call
to g references the objectisnow.

It is therefore nearly impossible to find the shadowed véemb
when entering arith-scope, but a test needs to be done at every
access. As a result Jsigloo replaces all references totpaihgim-
tercepted variables by a call to a closure which is then éaliby
Bigloo. This closure tests for the presence of a same-nanssg-m
ber in thewith-object, and executes the operation (eithet or
se) on the selected reference. Note thath constructs might be
nested, and in this case the operation on the “selectecerefet
involves calling another function. This transformatiom & simpli-
fied version) is summarized in the following code snippet.

with(o) {
X =Yy;

}

becomes

g
2:
5

1: (let ((x-set! (lambda (val) (if (contains o x)
2k (set! o.x val)
&g (set! x val))))
4
5

(y-get (lambda () (if (contains o y) o.y y))))
(x-set! (y-get)))

This approach obviously introduces a performance penatty a
together with the sometimes unexpected results (like tbsuce
referencing different variables) a widely accepted rec@mdation
is to avoidwith completely [7].

4.4 Function Compilation

The function translation is the arguably most challengiag pf a
Javascript to Scheme compiler. Not only is Javascript atfonal
language where functions are frequently encountered, fsehe
compilers usually optimize functions, and a good transtatian
reuse these optimizations. This section will restate thpnif-
ferences between Javascript functions and Scheme prasedie
will then discuss each point separately, and detail howalsigan-
dles it. Bigloo is often unable to optimize Jsigloo’s genéransla-
tion of functions, and the last part of this section presésigloo’s
optimizations for functions.

Three primary features make the function translation frauad
script to Scheme difficult (for a more detailed discussion Sec-
tion 2):

e Every Javascript function can serve as method too. In thss ca
every occurrence of the keywottlis in the function’s body is
replaced by the object on which the function has been invoked
Otherwisethis is replaced by thglobal object

e |t is possible to call every function with any numbers of argu
ments. Missing arguments are automatically filled witide-
finedand additional ones are stored in trgumentobject.

e Javascript functions are objects.

Jsigloo’s compilation of thehis keyword is straightforward:
When translating functions an additional parameteis is added

in front and all call-sites are adjusted: method calls passat-
tached object as parameter, and function calls pasgltiel ob-
ject

Javascript functions can be called with any number of argu-
ments and an early version of Jsigloo compiled functionsheo t
intuitive form (lambda (this . args) body) to use Scheme’s
variable arity feature. Some measurements revealed tlipodi
was more efficient, if vectors were used instead of the intpigts.
At the call-sites a vector of all parameters is construcaed, then
passed as second parameter aftettties. A translated function is
now of the following form:(1ambda (this args-vec) body).

Inside the function every declared parameter is then repted
by a local variable of the same name. At the beginning of tlee pr
cedure the local variables are either filled with their cepandent
values from the arguments vector, or setitalefinedFigure 4 con-
tains a simplified unhygienic version [8] of this processe Bame
figure shows the result for the declared parametensdb.

1: ‘(let* ((len (vector-length vec))

2 ,@(map (lambda (param-id count)

&s ¢(,param-id (if (> len ,count)

4: (vector-ref vec ,count)
5: ’undefined)))

6 param-list

7 (iota (length param-list))))

8 ,body)

(let* ((len (vector-length vec))
(a (if (> len 0) (vector-ref vec 0) ’undefined))
(b (if (> len 1) (vector-ref vec 1) ’undefined)))
body)

D W~

Figure 4. the Jsigloo-extract at the top generates the code respefisib
extracting the values out of the passegt. The code at the bottom gets
generated for the parameterandb.

After the variable extraction Jsigloo creates the argumeht
ject. As thearguments-entries are aliased with the parameter vari-
ables & andb in the previous example) we use the same technique
as for thewith statement: the entries within the-guments ob-
ject are actually closures modifying the local variableddiional
arguments access directly the values within the vectourgié
demonstrates this transformation.

As has already been stated in Section 3, Javascript furscien
mapped to the Bigloo classs-Fun, which contains a fieldun
holding the actual procedure. Jsigloo’s runtime libranyyides the
proceduremake-js-function, which takes a Scheme procedure
with its arity and returns such an object. Jsigloo only negds
translate the bodies of Javascript functions, and geneade,
that calls this runtime procedure with the compiled functis
parameter . The returned object of type-Fun is compatible
with translated Javascript objects. As the compiled famcts now
stored within an object, function calls are translated amtnember
retrieval, followed by the invocation of the received progee.

The overhead introduced by these transformations is substa
tial: the compilation of the simple Javascript functidiinction
f(a, b) {} produces a Scheme expression of more than 20 lines,
and the applied transformations are extremely countedtprt/e
to Bigloo’s optimizations. Storing the procedure in an abjef-
ficiently hides it from Bigloo’s analyses. The Storage UsealAn
ysis [15] (henceforth SUA), responsible for typing, and IBajs
inlining pass are both powerless after this transformafidre ar-
guments are then obfuscated by storing them in vectors, evher
Bigloo’s constant propagation can not see them. When Ingjlttie
arguments objects they are furthermore accessed froneiasitb-
sure, which makes them slower to access.

107

1: ‘(let ((len (vector-length vec))

2: (arguments (make-Arguments-object)))
& ,@(map (lambda (param-id count)

A8 “(if (> len ,count)

5: (add-entry arguments

6: (lambda () ,param-id)

Vs (lambda (new-val)

8: (set! ,param-id new-val)))))
95 param-list

10: (iota (length param-list)))

11: (let loop ((i ,(length param-list)))

12: (if (> len i)

13: (begin

14: (add-entry arguments

15: (lambda () (vector-ref vec i))
16: (lambda (new-val)

17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))

19: ,body)

1: (let ((len (vector-length vec))

2: (arguments (make-Arguments-object)))
& (if (> len 0)

4: (add-entry arguments

&8 (lambda () a)

6: (lambda (new-val) (set! a new-val))))
7: (if (> len 1)

84 (add-entry arguments

9: (lambda () b)

10: (lambda (new-val) (set! b new-val))))
11: (let loop ((i 2))

12: (if (> len i)

13: (begin

14: (add-entry arguments

15: (lambda () (vector-ref vec i))
16: (lambda (new-val)

17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))

19: body)

Figure 5. the Jsigloo code at the top is responsible for dlrguments
creation in the emitted result. The bottom is generateddoampetera and

Jsigloo contains some optimizations addressing thesesssu
simple one eliminates unnecessary lines: the creationecéithu-
ments object is obviously only needed if the variadtguments is
referenced inside the function. Otherwise Jsigloo justtenfiese
lines.

In order to benefit from Bigloo’s optimizations the indirect
function calls need to be replaced by direct function caherever
possible. Jsigloo’s analysis is still relatively simplet lit catches
the common case where declared (local or global) functioas a
directly called. The optimization is not yet correct thoughd in
its current form it needs to set an important restrictiontaninput:
the given program must not modify any declared functions ove
the global object or in aeval statement. Section 6 discusses the
necessary changes for the removal of this restriction.

Single Assignment Propagation (SAP) performs its optimiza
tion in two steps. First it finds all assignments to a variadnhel
storesitin a set. Then it propagates constant values @irgddunc-
tions) of every variable that is assigned only once in thele/poo-
gram.

Computing the definition-set is easy, but not trivial: Javi
automatically sets all local variables tiadefinedat the beginning
of a function, and nearly every variable is hence modifiectast
twice. Once it is assigned tmdefinedand then to its initial value.
Declared functions (global and local) are immediately egheir
body and are hence treated accordingly. For all others aftbata
analysis needs to determine, if the variable might be usel-un
fined. This analysis is mostly intraprocedural, and onlydseene

pass. Some parts are however interprocedural as escapialglea
cross function boundaries. Take for instance the follovdode:

: function f£()

var y = 1;

var g = function() { return x + y + z; };
var z = 2;

g0;

var x = 3;

return x + y + z;

1
2
3
4:
5:
6: =
7:

8: }

Even though withint the variablex is read only after the defi-
nition in line 6, the call at line5 still uses the undefined variable.
on the other hand is always used after its first (and uniqui@)iee
tion. Usually these cases are difficult to catch, but SAP mes#o
find at least the most obvious ones: if a variable is definedrbef
an anonymous function has been declared (as is the cageirfor
our example), the analysis does not add the implindefinedlef-
inition to the variables definition set. SAP does hence ctiyrset
y's definition set to the assignment in li@ebut will find two defi-
nitions forz. At the moment og’s declaratiore is still undefined,
and as it is used withig the final definition set o will hold the
implicit undefineedefinition and the assignment at lide

The implicitundefinedassignments are disturbing Bigloo’s op-
timizations too. Whenever in doubt Jsigloo sets the vagiabun-
definedat the beginning of a function. One of the first analyses
Bigloo applies is the SUA-analysis, which detects the assint
of undefinedand types the variable accordingly. Even if Bigloo is
able to remove this assignment later on, it will not retype\thri-
able, and misses precious optimization opportunities.

Once the definition-set has been determined, a second
propagates “single assignments”. If a variable has onlyassén-
ment in its definition set, and this assignment sets the arie
a constant value or a Javascript function, all occurrenéebi®
variable are replaced by either the constant, or by a referém
this function. In our example the linéstill usesx andz, as their
definition-sets contain more than one assignment. The @attian
transforms our previous example into the following code:

: function £() {

var y = 1;

var g = function() { return x + 1 + z; };
var z = 2;

anonymous_g() ;

var x = 3;

1
2
3
4:
5:
6.
7: return x + 1 + z;

8: }

Wherever the backend finds direct function-referencesiovg
able to optimize the call. Instead of extracting the procedtom
the function object it can use the function-reference. Tiewipus
creation of function objects must first be modified to allowess
to the procedure:

e
2:

(set! direct_f (lambda (this vec) body))
(set! f (make-js-function direct_f 2))

In our benchmarks and test-cases 27% of all function cailkico
be replaced by direct function calls after this analysis.

Wherever Jsigloo is able to replace the indirect calls witaal
calls it can also improve the parameter passing. The fumstgig-
nature provides the expected number of arguments, and thempa
ters do not need to be hidden in a vector anymore. If there @& m
ing arguments, they can already be filled witlhdefinecconstants
at compile-time. An additionalrg-nb parameter passes the orig-
inal number of arguments, which is needed for the creatichef
arguments object. The last argument finally contains amithtiar-
guments, that have not been mapped to direct parameterswilhe

108

pass

be used duringrguments creation, too. Obviously the generic call
needs to be adapted too, and the parameter-extraction of fige
lifted into the procedure passed to tke-js-function.

Many functions do not usehis and in this case the first ar-
gument can be removed. The same is of course truedgrnb
and rest-vec, which are only needed, if the function uses the
arguments-object. Our running example is finally transfeirimto
the following code:

(set! direct_f (lambda (a b) body))
(set! f (make-js-function
(lambda (this vec)
(let* ((len (vector-length vec))
(a (if (> len 0)

(vector-ref vec 0)
’undefined))
(> len 1)
(vector-ref vec 1)
’undefined)))
(direct_f a b))

® Gf

POEIIDHTHPE

2))
Applying these optimizations to the well known Fibonacaidu

tion let the size of procedure drop from more than 75 to ab6ut 2
lines’, and reduce execution time by a factor of more than 20.

5. Performance

Ack Fib Meth Nest Tak | Hanoi
Jsigloo J 1931 443 185 898 28 424
Rhino 1042 666 155 973 55 619
Jsigloo C 513 368 84 1060 11 368
Konqueror - 17183 | 262 15478 | 593 | 21049
Firefox - 3179 227 1808 79 2762
NJS - 767 23 1481 25 734

Jsigloois not yet finished, and the given benchmarks (sesgthe
pendix for the sources) are therefore just indications. Aswanted
to be able to run our benchmarks on most existing Javasonipt i
plementations we decided to move the time-measurementhiato
benchmark itself. This way it was possible to benchmarkrinte
net browsers too. At the same time we lost the start-up oeerhe
and the more precise measurement of the Linux kernel. Akg¢im
have been taken under a Linux 2.6.12-nitro on an AMD Athlon
XP 2000+, and are expressed in Milliseconds. We used Suiks JD
1.4.2.09 (HotSpot Client VM, mixed mode) and GCC 3.4.4. \We ra
every benchmark at least three times, and report the fastest
sured time here. Konqueror [2], Firefox [1] and NJS [3] wheoe
able to complete Ack (stack overflows) and do not have a time fo
this benchmark.

“Jsigloo J” uses Bigloo’s JVM backend, whereas “Jsigloo C”
targets C, followed by a compilation to native code. “Rhiniof
version 1.6R2RC2, compiles Javascript directly to JVM bygte
and competes hence with “Jsigloo JVM”. The fastest time @n th
JVM machine is underlined. “Konqueror” 3.4.2, “Firefox"016
and “NJS” 0.2.5 are all interpreters (even though NJS wasvaldl
to precompile the Javascript code into its bytecode forianad)are
compared to “Jsigloo C”. The fastest time is in bold.

During the development these benchmarks have been (and are
still) used to pinpoint weak spots of Jsigloo, which werenthe
improved. One of the first benchmarks has been Fibonaccghwhi
explains Jsigloo’s good results in some of the other cadrigive
benchmarks (Hanoi and Tak). “Nest”, as the name hints, mergs
a number within nested loops. We verified our results and for
this benchmark the Java version is actually faster than #tieen

9We are well aware, that this is still far away from a standartinés
implementation, but most of the resting lines are redundams, begins
or #unspecified which are easily removed by Bigloo.

C version. The JVM version of Ackermann is still slower than
Rhino’s code, but we have pinpointed the source of ineffjen
and a generic transformation brings the time for “Ack” dowrihe

with all languages Bigloo interfaces and excels in this aFea-
thermore, if Bigloo improves, Jsigloo/Bigloo will improveo.
Despite Javascript’s resemblance to Scheme, we could ket ta

same level as Rhino. “Meth” on the other hand makes heavyfuse o full advantage of all Bigloo optimizations and needed to lenp

anonymous functions and objects, and this part of Jsiglootiget
optimized at all.

Note, that Jsigloo is not conformant to the ECMA specifigatio
(see Section 6), and has therefore an unfair advantageteveoin-
petitors. Some tests showed that Fibonacci's executioa would
double if the global object was treated correctly. Otheregignces
however confirmed, that for instance a fully optimizing Rhiis
not conformant either, and especially thiebal objectis equally
ignored.

6. Future Work

Jsigloo is not finished. Several Javascript features haveyeto
been implemented and some parts of Jsigloo are not confotman
the ECMA specification. From the more than 10 runtime objects
only two have been written until now (in particular tBeolean,
String, Number andDate objects are still missing). Due to limi-
tations in the used lexer-generator, some syntactic sagaisising
too (Javascript’s automatic semicolon insertion and igsila ex-
pression literals).

At the moment Jsigloo does not handle the global object cor-
rectly either. It is not possible to modify global variableger an
object, and function calls receive a standardect asthis. We
intend to fix this shortcoming by adding two strategies:

e a “correct” solution using a special global object, thatdsol
closures. Whenever a field is modified the closure automati-
cally updates the real global object. (Inversely readiogifthe
global object automatically redirects to the real globaialale).

A similar strategy is already being used for tiguments ob-
ject and thesith translation.

¢ a fast implementation which disallows the use of the global
object. Every access to the global object throws an exaeptio

The eval function is missing too. Javascript’s and Scheme’s
eval specification are different and incompatible, but Bigloo-pr
vides some extensions to Schemeia1 which should allow the
implementation without too much trickery.

Once either theval-function or the global object is correctly
implemented, the SAP optimization of Section 4.4 needs to b
adapted. Functions that are visibledeal statements and global
functions might not be called directly anymore.

Finally the number representation needs to improved. depas
numbers are mapped to Scheme doublesﬁasﬂlZ] doubles do
not provide enough functionality to correctly representadaript
numbers, but BRswill extend Scheme’s number specification, and
we will revisit this topic once Rrshas been released.

7. Conclusion

We presented in this paper Jsigloo, a Javascript to Scheme co
piler we implemented during the last five months. Togetheh wi
Bigloo it compiles Javascript to Java byte-code, C, or .NHT.C
In the introduction we listed the features Jsigloo shoulehaVe
wanted the compiler to be small. Jsigloo is not very big, bithw
about 30.000 lines of Scheme code Jsigloo is not small angnftor
is still easy to maintain the project, but the effort reqdiighigher
than we hoped it would be. Jsigloo’s size is explained by fhe o
timizations we integrated in Jsigloo, and preliminary benarks
show that Jsigloo/Bigloo has the potential to be as fastafastest
existing Javascript compilers. As Jsigloo uses Biglootirifaces

109

ment additional optimization passes. SAP (Section 4.4peoés
direct method calls, Bind-exit-removal pass (Section 4.1) elim-
inates unnecessary (but currently expenshied-exits, and typ-
ing (Section 3) improves the ubiquitous conversions of Jewpt
and helps several Bigloo optimization by providing Javigser
specific type information.

Compiling to Scheme and using an efficient existing Scheme
compiler did not fulfill all our expectations, but still ye#d an
interesting compiler. Once all missing features are imelerad
Jsigloo may be an attractive alternative to all other Jaigtstcom-
pilers.

[1] http://www.mozilla.org/products/firefox/.

[2] http://www.konqueror.org/ .

[3] http://lwww.njs-javascript.org/ .

[4] http://lwww.caucho.com/articles/990129.xtp

[5] http://www.mozilla.org/rhino/ .

[6] Bobrow, D. and DeMichiel, L. and Gabriel, R. and Keeneasd
Kiczales, G. and Moon, D. Eommon lisp object system
specification— special issue, Sigplan Notices, (23), Sep, 1988.

[7] D. Flanagan JavaScript - The definitive guide— O'Reilly &
Associates2002.

[8] Dybvig, K. and Hieb, R. and Bruggeman, CSyntactic abstraction
in Scheme- Lisp and Symbolic Computation, 5(4), 1993, pp.
295-326.

[9] ECMA — ECMA-262: ECMAScript Language Specification—
1999.

[10] Flatt, M. and Krishnamurthi, S. and Felleisen, MClasses and
Mixins — Symposium on Principles of Programming Languages, Jan,
1998, pp. 171-183.

[11] Goldberg, A. and Robson, D.Smalltalk-80: The Language and
Its Implementation — Addison-Wesley1983.

[12] Kelsey, R. and Clinger, W. and Rees, Jhe Revised(5) Report on
the Algorithmic Language Scheme- Higher-Order and Symbolic
Computation, 11(1), Sep, 1998.

[13] Martin Abadi and Luca Cardelli A theory of objects— Springer,
1998.

[14] Muchnick, S. -Advanced Compiler Design Implementation—
Morgan Kaufmann1997.

[15] Serrano, M. and Feeley, M.Storage Use Analysis and its
Applications — 1fst Int'l Conf. on Functional Programming,
Philadelphia, Penn, USA, May, 1996, pp. 50-61.

e [16] Serrano, M. and Weis, P.2+1=1: an optimizing Caml| compiler—

ACM Sigplan Workshop on ML and its Applications, Orlando
(Florida, USA), Jun, 1994, pp. 101-111.

8. Appendix

Benchmarks
Ackermann

function ack(M, N) {
if (M == 0) return(N + 1);
if (N == 0) return(ack(M - 1, 1));
return(ack(M - 1, ackM, (N - 1))));

i
2
3
4:
5:
6
vs

Fibonacci

1: function fib(i) {
2 if 1< 2)

3: return 1;

4: else
5:
6
7

return fib(i-2) + fib(i-1);

: £ib(30);

Method Calls Tak

1: function methcall(n) { 1: function tak(x, y, z) {

2 function ToggleValue () { 25 if My < x))

55 return this.bool; 55 return(z);

4: 4: else {

5: function ToggleActivate () { 5: return (

6 this.bool = !this.bool; 6: tak (

7 return this; 7: tak (x-1, y, 2z),
8: } 8: tak (y-1, z, x),
9: 9: tak (z-1, x, y)
10: function Toggle(start_state) { 10:));

11: this.bool = start_state; 11: }

12: 12: }

13: this.value = ToggleValue; 13:

14: this.activate = ToggleActivate; 14: tak(18, 12, 6);

15:

P ¥ Towers of Hanoi

18: function NthToggleActivate () { . .

19: if (++this.count > this.countmax) { 1 M to?zers(nb_dlscs, source, dest, temp) {
20: this.bool = !this.bool; 2 if (mbdiscs > 0) {
21: . Cens S il 3 return towers(nb_discs - 1,
22: } - 4: source,
23: return this; 2% 9
24: } ?‘7 . dest)
25: X
26: function NthToggle (start_state, max_counter) { 8: + towers(nb.discs - 1,
27: this.base = Toggle; s B9
28: this.base(start_state); 405 CxE,
29: this.count_max = max_counter; s source) ;
30: this.count = 1; 12: }

31 - 13: return 0;

32: this.activate = NthToggleActivate; 4}

33: 15:

34 16: towers(20, 0, 1, 2);

35: NthToggle.prototype = new Toggle;

36:

37: var val = true;

38: var toggle = new Toggle(val);

39: for (i=0; i<n; i++) {

40: val = toggle.activate().value();

41:

42: var tmp = (toggle.value() 7 "true"

43: : "false");

44

45: val = true;

46: var ntoggle = new NthToggle(val, 3);

47: for (i=0; i<n; i++) {

48: val = ntoggle.activate().value();

49:

50: return (tmp + " " +

51: (ntoggle.value() ? "true"

52: : "false"));

53: }

54:

55: methcall(10000);

Nested Loops

1: function nested(n) {

2: var x=0;

3: var a=n;

48 while(a--) {

s var b=n; while(b--) {

6: var c=n; while(c--) {

s var d=n; while(d--) {
8: var e=n; while(e--) {
9: var f=n; while(f--) {
10: X++;

11: }

12: }

13: }

14: }

15: }

16: }

17: return Xx;

18: }

19:

20: nested(14);

110

