Demand-Driven Type Analysis:
an Introduction

Danny Dubé

Marc Feeley

DIRO
Université de Montréal
{dube, feeley}@iro.umontreal.ca

Abstract

We propose a new demand-driven approach to efficiently
drive a powerful type analysis for a dynamically-typed func-
tional language. The analyzer has the advantage of being
controllable by a bound on the time that it can put into the
analysis. When given enough time, it can provide results of
very high quality. The analysis is based on a flexible analysis
framework that allows the abstract modeling of the compu-
tation to be modified while the analysis is performed. The
approach consists in generating initial demands from reliable
hints in the program and processing these demands to pur-
posefully guide the modifications of the abstract model. Our
proposed approach has not been implemented fully, but we
sketch a prototype implementation of demand-driven anal-
ysis which is based on simple pattern-matching.

1 Introduction

Program analyses are widely used in compilation. They
range from common sub-expression detection analysis [2] to
pointer analysis [10]. There are analyses intended more for
low-level languages such as C and others more intended for
high-level languages such as Scheme. The analyses have a
tendency to become more essential and more complex as
the languages they are intended for become advanced. Two
reasons might help to explain that. First, a higher-level lan-
guage offers more general services to the programmer, which
often incur a penalty in code efficiency if a compilation is
done without a certain effort in analysis and optimization.
Second, the properties that must be discovered in order to
do a good compilation are generally more complex. Unfor-
tunately, more complex analyses usually imply more costly
analyses.

When a compiler implementer is faced with the prob-
lem of gathering a certain kind of information, he often has
to choose among a wide spectrum of approaches, especially
when the problem is complex. The tradeoff is normally be-
tween the time (and/or space) taken by the analysis and the
accuracy of the information to gather. Most of the time, the
implementer chooses a certain approach and glues it to his
compiler. But on what basis should a particular approach
be chosen?

1.1 Choosing the “best” analysis

The choice is usually done considering the average needs of
the target users. Most of the time, the chosen approach has a
well-defined behavior in terms of its accuracy, running time,

and required space. Of course, the choices made cannot
satisfy every user in every situation: one user may find it too
slow; another, too inaccurate. This is the case even if several
optimizations levels are implemented in the compiler. Let us
sketch the possibilities that are available to the implementer.

Traditional analyses

Fast analyses are popular. There are many: control-flow
analysis [14, 15], numeric range analysis [8], abstract refer-
ence counting analysis [11], etc.

They manipulate a well-defined abstraction (or model) of
the program and its computations. The size of the model is
in direct relation with the size of the program and the time
required to compute the analyses is always in O(n") for a k
rarely greater than 3. The amount of resources required is
well under control. And they obtain results that are quite
acceptable most of the time and provided that the program
contains typical code.

Unfortunately, the polynomial time bound often causes
serious limitations in the cleverness of these analyses. Some-
times, even very ordinary programming styles can mislead
the analyses and make them produce poor results. As an ex-
ample, Jagannathan and Weeks mention in [12] that control-
flow analyses that use call-strings to disambiguate abstract
evaluation environments (such as the k-cfa) get confused by
the use of the map function called with different argument
types. Such an example is showed in Figure 1. The code is
straightforward and yet, the k-cfa or a similar analysis will
fail to show that there is no type error, no matter which k
is used. This is because, after k recursive calls of map to
itself, the call-string is invariably the same. At that point,
all the functions and all the pairs that are passed to map are
merged together, which makes the analysis believe that the
wrong operator may be applied to the wrong list.

In more general terms, we could say that the limitations
of the k-cfa come primarily from the fact that it uses unre-
liable hints to distinguish the abstract evaluation environ-
ments; namely, the call-strings. For example, in Scheme, the
body of a function has no means of computing the syntactic
position where the call to the function occurred. Neither
does there exist tests to determine where a particular pair
was created. On the other hand, there exist type tests and
primitives to inspect the contents of the objects. In the best
of cases, call-strings and concrete computations are merely
correlated, whereas types and values are directly involved in
the computations. For these reasons, we consider call-strings
to be unreliable hints for an analysis.

Many of the traditional analyses can be fooled by a pro-

(define (map f 1)
(if (null? 1)
0]
(cons (f (car 1))
(map £ (cdr 1)))))

(map (lambda (n) (- n)) °(1 23 ...))

(map (lambda (p) (car p)) ’((1) (2) ...))

Figure 1: Difficult code for the k-cfa

gramming style that is not convoluted. This can be frustrat-
ing for a user that has a program that he knows is correct
but that is beyond the limited power of the available an-
alyzer. He may be willing to give the analyzer plenty of
resources in order to obtain better results but the analyzer
will not take advantage of this to improve the analysis.

More accurate analyses

To avoid the limitations of the traditional analyses, one can
instead choose an analysis that uses “the Right Hints” in or-
der to distinguish various abstract environments. The right
hints can be the type of the objects that are passed to the
procedures, for example. This has a true correspondence
with the concrete computations that occur in the program:
an expression in caller position should return a function, the
argument to car should be a pair, etc. We will expand on
this later.

While we should expect better analysis results from such
an analysis, we should expect catastrophic time and space
consumption in certain cases. To see why, it suffices to con-
sider an expression located inside a function of high arity
or inside many nested A-expressions (say, n variables in the
lexical environment) and an analysis that distinguishes the
abstract evaluation environments based on the type of the
objects bound to the variables (say, k different types). This
analysis immediately exhibits exponential behavior (k" dif-
ferent abstract environments).

If a user has to use a compiler that features such a (poten-
tially) costly analysis instead of a traditional one, it would
be just as frustrating for the user as in the other case. He can
only choose between disabling the analysis, if it is possible,
and waiting for days for a single compilation.

Static model

It is clear that it is difficult to find the “right” balance be-
tween speed and accuracy when the time comes to choose an
analysis model. Even when the “best” compromise has sup-
posedly been chosen, when a individual program is compiled,
it is tempting to believe that another compromise would
have been “better”. Having said that, we claim that this
ambiguity comes from the fact that the model is static. Of
course, it depends on the program, but in a very simple man-
ner and it remains the same during the whole compilation
of the program.

Since the analyzer is committed to an abstract model, it
necessarily exposes itself to be either too simplistic or too
heavy for particular programs. It results either in too poor
accuracy or in good results that have been obtained with
a vastly too great effort. It can even be both for the same

program when some of its interesting properties are very
easy to discover while the others are more challenging.

Dynamically changing model

What we believe to be more appropriate is to have an ab-
stract model that can dynamically change. That is, it should
adapt to the level of difficulty of analysis of the particular
program to analyze.

Here is a sketch of an analysis using a dynamically chang-
ing model. At the start, the strategy is to choose an initial
model that is coarse. Since coarse analyses do quite well in
the typical case, a significant part of the interesting proper-
ties may already be found by this first analysis. Then, the
model ought to be refined, in order to be better equipped
to attack the remaining, more difficult properties. It may
result in having some more properties to be found. Then
the model is refined again. And so on...

Of course, this raises many questions: How do we identify
the so-called “interesting” properties? What should a refine-
ment of the model be? How can we automatically update
an abstract model? And more importantly, what should a
“better equipped model” be? Before we start to bring an-
swers to these questions, we must describe our goal in more
detail.

1.2 The objective

We intend to develop an adaptable-power type analysis for a
purely functional, applicative, and dynamically typed mini-
language. We assume that the entire program is available.
The analysis must have the potential to be very precise.
However, the user should have the control over the amount
of effort that is put into the analysis of his program. This
way, during development, he can request a fast and coarse
analysis, and, at the final compilation, invest an appropriate
amount of time to obtain a high-quality analysis.*

The analyzer has to be able to deal with a bound on the
amount of work it can do. When given little time, it must
terminate quickly, delivering results that are potentially of
poor quality. When given a lot more time, it must either
terminate prematurely if completely satisfying results are
obtained or, in the usual case, continue to improve the qual-
ity of the results until the time is up. We do not want to rely
on programmer annotations. These may be erroneous and,
consequently, cannot be trusted. To trust any annotation
would contradict the principle of safety that comes with a
high-level language.? Only a safe analysis should provide
results that are to be used for optimization purpose.

The abstract model used by the analyzer must be flex-
ible. The crucial part of our objective is to find an “intel-
ligent” driver that is able to coordinate the re-analysis and
model-update cycle to try to obtain the best results within
the time bound that is given. The driver must refine the
model when it seems profitable, but refrain to do so when it
seems useless. Note that, as intelligent as the driver might
be, we do not want to do true AI, not even an expert system.
We want a driver that proceeds in a more systematic way.

'What we consider as a fast and coarse analysis is something sim-
ilar to the O-cfa. A higher-quality analysis would necessarily be more
costly. For very long programs, the cost may be prohibitive, even for
a fast analysis, considering that O-cfa has cubic complexity in worst
case.

2Moreover, if the program contains an expression such as (car x),
it already means that the programmer believes that x can only be
bound to pairs.

Exp = ¢ e € Exp',l € Lab
Exp’ = #f
b'e x € Var
(e1 e2) e1,e2 € Exp
(Ax. e1) x € Var,e; € Exp
(if e1 e2 e3) e1,ea,es € Exp
(cons ey e2) ei,ex € Exp
(car e1) e1 € Exp
(cdr e1) e1 € Exp
(pair? e1) e1 € Exp
Lab := Labels
Var := Variables

Figure 2: Language syntax

In order to achieve our goal, we use a flexible analy-
sis framework that is presented in Section 2 along with the
mini-language. This framework can support very powerful
analyses and, so, can help to prove interesting but difficult
properties of the program. Section 3 presents an intuitive
introduction to the demand-driven analysis. It is the de-
mands that encompass the required “intelligent” driver for
the analyzer. The idea is quite simple: interesting proper-
ties can be found with the help of hints present in the pro-
gram; these properties are likely to be true and if they are,
then may happen to be provable, mathematically speaking;
it follows that they might be provable inside our framework
and maybe in reasonable time. Section 4 sketches a basic
demand-driven analysis implementation. It is based on pat-
terns. Finally, Section 5 concludes with a brief mention of
the research that is the closest to our own and with the next
logical steps in our research.

2 Notation and definitions

2.1 A small language

The language we use in this paper is presented in Figure 2.
It is a small subset of Scheme with a few modifications. It is
purely functional, applicative, dynamically typed, and eval-
uation proceeds from left to right. The only types available
are the booleans, with #f as the sole element, the pairs and
the procedures having one parameter. The modifications
are: all the pair-related primitives are syntactic forms and,
when the pair? expression must evaluate to a true value, its
evaluates to the same pair as its argument. All these details
can be found in the semantics of the language in Figure 3.3

Despite the fact that the language is small, it is complex
enough to allow the construction of programs that are as
difficult to analyze as one can desire. A simple A-calculus
provides only one “type”: the functions. In the present
case, the variety of types combined to the fact that certain
expressions require objects of a specific type creates the nec-
essary complications. The call expression and the car and
cdr expressions require the first sub-expression to be of a
particular type (a simple implementation would perform a
dynamic type test to guarantee safety).

Throughout the paper, we assume that a program in this
language has no free variables, is a-converted?, and prop-
erly labeled®. To keep things simple, we consider that the

3The “U)” sign denotes the disjoint union. That is, A = B U C' if
and only if A=BUC and BNC =0

4All variables in the program have a distinct name.

5Each expression in the program has a distinct label.

Val® := Err U Val

Err := Errors

Val := ValB U ValC U ValP

ValB := {#{} Booleans
ValC := Val — Val® Closures
ValP := Val x Val Pairs

Env := Var — Val

E: Exp — Env — Val'
E [#£] p = #f

([[]]p)
(A

C (E [e2] p) (A v1))
E[(Ax. ed] p = . E [[61]] plx —]

E[Gif erexen)] p= [ex] p)

v. U]I# #£ 7 E [e2] p: E [es] p)
Ul ([e2] p) (Ava. (v1, v2)))

v. v = (111, v2) ? v1 : ERROR)

[ei] p)

v. v = (v1, v2) 7 V2 : ERROR)
[e:] p)

Av. v € ValP ? v : #{)

A : Val = Val — Val' Apply function
Afo = feValC? f v:ERROR

C: Val" - (Val — Val®) — Val' Check function
Cuvk =v€EEr?v:kv

Evaluation function

m
=
"
=
A~

I

E[Cere)] p

=

C
A

E[(cons erex)] p = C
A

E [(car en)] p =C
A

E [(cdr e)] p = C
A

C

(E
(
(E
(
(E
(
(E
(
E[(pair? e)] p = E

Figure 3: Language semantics

purpose of our type analysis is to collect information that
allows the compiler to remove as many dynamic type tests
as possible.

2.2 A generic analysis framework

In the introduction, we insisted on the fact that an ana-
lyzer should have the ability to modify the abstract model
that it uses to analyze the program. This requires the in-
troduction of a generic analysis framework. The framework
by itself is not a complete analysis procedure; it requires
many parameters to become an instanciation of an analysis.
The parameters may be assimilated to the model itself. The
framework imposes very few constraints on the model.

Instantiation parameters

Figure 4 presents the parameters and a brief description
of each. First, the framework expects sets of abstract val-
ues. These are given by three finite non-empty disjoint sets.
Second, another finite set provides the contours. Note that
no other constraint exists on what these sets might be. Fi-
nally, the framework expects abstract computation functions.
These mimic the concrete computations done by the pro-
gram. There is one for the creation of closures, one for the
creation of pairs and one to select contours associated with
the abstract evaluation environments.

Function cc receives the label [of an expression and the
current contour k and returns an abstract closure. Function
pc receives the label [where a pair containing v; and vs is
created in contour k, and returns an abstract pair. Function
call receives a label [where a function f is applied to value

ValB # 0 Abstract booleans
#0

ValC Abstract closures
ValP # 0 Abstract pairs
Cont #10 Contours

ko € Cont Main contour

cc : Lab x Cont — ValC Abstract closure creation
pc : Lab x Val x Val x Cont — ValP

Abstract pair creation
call : Lab x ValC x Val x Cont — Cont

Contour selection
where Val := ValB U ValC U ValP

Figure 4: Instantiation parameters of the analysis frame-
work

v in contour k; it returns the contour in which the body
of ¢ has to be evaluated. These functions must be defined
on all their domain and, of course, respect their type. On
top of that, one of the contours must be identified as the
main contour, that is, it is the contour in which the top-
level expression e;, of the program is evaluated.

The case of the abstract booleans deserves a short ex-
planation. It is obvious that the framework does not allow
as much parameterization for the booleans as for the other
types. There can be more than one abstract boolean, of
course, but no boolean creation function is expected by the
framework. There could be, since the #f and pair? expres-
sions can evaluate to a boolean. However, since there is
only one concrete boolean, we did not feel the need to pro-
vide the tools to manipulate distinct abstract booleans. In
fact, we do not know if it would be useful at all. However,
support for distinct boolean manipulation could be added
in the framework with little effort.

Note that, although the abstract evaluation functions
must be defined on all their domain, not all input combina-
tions make sense. For example, the result of the cc function
does not make sense when the label that it is passed is not
the label of a A-expression. However, the analysis will never
use this result either, so cc can return any element of ValC
without consequences. This approach is simpler than hav-
ing the set of labels partitioned into A-expression labels, call
labels, etc.

Analysis variables

Once the parameters are passed to the analysis framework,
a complete analyzer is instanciated. Here we present the
matrices of abstract variables that are used by this analyzer.
Figure 5 briefly enumerates them.

The a matrix contains the abstract values to which each
expression evaluates in each contour. A particular entry ag
may be empty. It occurs if the expression e; does not get
evaluated in the abstract environment represented by the
contour k. The 8 matrix contains the values bound to each
variable in each contour. When the body of the expression
(\ix. ep) is evaluated in a contour k, a reference to the
variable x refers to the entry By . An entry By may be
empty, too, for similar reasons as with a; . An entry -y
of the matrix 7 contains the values that are returned by the
closure ¢ when its body has been evaluated in the contour
k. Once again, it may be empty. An entry §;; is basically
a flag. It indicates whether or not e; gets evaluated in the
contour k. Its contents is not important; only the fact that
it is empty or not. Non-emptyness of §; » implies evaluation.

Value of e; in k:

oy C Val l €Lab, k€ Cont
Contents of x in k:

B,k C Val x € Var, k € Cont
Return value of ¢ with its body in k:

Ye,e C Val ¢ €ValC, k € Cont
Flag indicating evaluation of e; in k:

o,k C Val l €Lab, k€ Cont
Creation circumstances of c:

Xe Cecc te) ¢ € ValC
Creation circumstances of p:

™ Cpc'(p) p€EValP
Circumstances leading to k:

ki Ccall™'(k) k€ Cont

Figure 5: Matrices containing the results of an analysis

The meaning of the remaining three matrices is less ob-
vious. They provide a kind of log of the origins of the
abstract values. As an example, let us consider an ab-
stract pair p € ValP. p could be created by any tuple in
pc ' (p) = {(I,v1,v2,k) | pc(l,v1,va,k) = p}. However, the
log entry m, conserves only the tuples that the analyzer has
effectively encountered during the (maybe numerous) cre-
ations of p. These logs allow the analyzer to avoid being too
conservative.

The analysis is sound, in the sense that the analyzer
acts conservatively with the abstract values. That is, every
concrete evaluation environment in which an expression e;
truly evaluates is modeled by abstract values in a certain
abstract contour. Every concrete value that exists in the
concrete evaluation is represented by an abstract value in
the analysis results. The concrete value that is returned by
a certain closure at a certain step in the concrete evaluation
has an abstract counter-part that is returned by an abstract
closure in a certain abstract step (the contour). And so on.
The soundness property can be formally proven, but we do
not do so in this paper.

Evaluation and safety constraints

Given a program and the instantiation parameters, our fra-
mework performs the analysis of the program using the eval-
uation constraints presented in Figure 6. Basically, a set
of constraints on the analysis variables is generated for the
program. Any solution to this set of constraints provides a
valid analysis result. Naturally, we are always interested in
the least solution to the system of constraints. A solution al-
ways exists because, despite the variety of the generated con-
straints, they can all be decomposed into basic constraints
of the form: v1 € v, 1,...iy n, Ao AUm E Vi g =
v € Vj,,...j, - S0 the saturation of all analysis variables gives
a trivial valid solution.

The evaluation constraints are quite standard and do not
deserve much more explanation. Except maybe the mainte-
nance of the log matrices. For example, each time a pair p
is created at a cons expression, the tuple (I, v1, v2, k) repre-
senting the label of the expression, both values to pack in
the pair, and the current contour is logged in the variable).
The logged tuples are later used by various computations to
discover the origins of the abstract values. For example, the
car expression uses the log 7, (and not pc™!(p)) to enu-
merate to values that may be found in the CAR field of the

----- im

Safety constraints for program e;, are:

U S [ei,] k, where

reCont
S[#] k=0
Sx]k=0
S (el 612)]] k= {all,k - VaIC} usS [[311]] kUS [[elz]] k
S[ux. e)] k=S8 [e,] k
. : . S [ty el €, 613)]] k=S [[ell]] kUS |I612]] kUS [[613]] k
Evaluation constraints for program e;, are: S [(consy e, ei0] k= S [en,] k U S [e] k
S (carl 6[1)]] k= {all,k Q VaIP} U S [[ell]] k
U €lewl b U (G 2 ValB}, where S [(edr; e1)] k = {ar, & C VaIP} U S [er,] k
keCont S [(pair?; 611)]] k=S8 [[ell]] k
E#f] k=
{61,k 0 = ar 1 D ValB} Figure 7: Safety constraints
Elx] k=
{610 0 = ar Dref(x, 1, k)}
ENGey e)] k= pair p. Finally, note that the extra constraint d;, %, 2 ValB
{013,k 200k, 0156 20k} UE [en,] KU E [er,] kU is added to ensure that the evaluation of the program gets
By, 20, c€ayrnNValC, v € ayk, started.
ALk 2 Yek's k' =call(l,c,v, k), The reader may have noted that the evaluation con-
kD (Le,v, k) | (I k") € xe, err = Opx. epnr) straints do not take errors into account and manipulate only
Elx. ek = the values that are legal. This is because we separate the
{(51,,c #0= ar 3 cc(l,k) A xeeay 2 (1, k)} U evaluation constraints from the safety constraints. Figure 7
{61,.0 2 Bur} UE [er,] kU presents the safety constraints that are generated for a pro-
{Yek D au . | c€ValC, (I,k') € xe} gram e;,. These constraints are straightforward. The rea-
E (Gt ey e, e1)] k= son we .keep these separated is that once we add the safety
{61,k D0k} UE [er,] kU constraints to the set of evaluation constraints, ’_chere may
{8150 D iy 1 N (ValC U ValP)} U be no solution to the. system. If there is a solution to the
{8156 D s, x NValB} U & [e,] kU joined sets of cogstralnts, that means that the.model (the
£ [[613]] EU{og Dag, U al&k} parameters) provides a proof that the program 1s type-safe.
£ [(cons; €1, er,)] k = The usual way to analyze a program is to solve the
{61, D 01ks Otk D20k} UE [er,] kU E [er,] kU system of evaluation constraints, which leaves the analy-
sis results in the analysis variables, then confront the re-
Qg 3 p, v1 € Quy,k, V2 € Quy ik,

sults to the safety constraints, and see which constraints
are violated. The latter indicate where dynamic type tests
are required. For example, the violation of the constraint
ay € ValC for a certain sub-expression e;r (whose parent

p D (l,Ul,’UQ,k) p= pC(l,Ul,UQ,k)
E [(car;)] k =
{0, 20k} UE [en,] kU

QD V1 | p € ;xNValP, (l,v1,v2,k') € Wp} is a call expression e;) and contour k, indicates that there
€ [(cdr; e)] k= must be a dynamic test at e; to ensure that the result of e;
{0k 20k} UE e,] kU is indeed a closure®.
{Oél,k S va | p € oy, xNValP, (l,vi,v2,k") € mp }
€ [(pair?; e;)] k = Power and genericity of the framework
{61, 6 20k} UE e] kU {aur 2 iy NValP} U L .
{ou, x N (ValBUValC) # 0 = ay D ValB} The parameterization of the framework all.ows it to be a very
powerful analysis tool. Here are some of its characteristics.
We do not give proofs here, though.
ref(x,1', k), if ey £ \pry. er)
Bk, ifep = \px.) e The parameters representing a model, as little con-
Upref(x, I, k), ifer = Opy. e, strained as they might be, are still finitely representa-
ref(x, [, k) = (1", ¢,v, k") € Ky, ble. One might ask whether it is possible to automat-
(', k') € xe ically decide whether there exists a model that allows
where I' = parent(l) the analyzer to demonstrate that a program is type-
safe. Unfortunately, this problem is undecidable; it is
Figure 6: Evaluation constraints possible to reduce the termination problem to this one.

e For every program that terminates normally, there ex-
ists a model that demonstrates that it is type-safe. A

6This explanation assumes that there is only one call expression e;
generated by the compiler in the executable code. This assumption
may be too simplistic. A good optimizing compiler may generate
more than one call expression instance of e;, each corresponding to
a contour (or to many). In this case, the instances associated to
contours where no violation occurs do not require a dynamic type
test. However, the topic of producing good executable code from
analysis results is beyond the scope of this paper.

trivial model that does so consists in mimicking the
concrete evaluation of the program. It introduces one
abstract value for each concrete value. However, it is
generally impossible to know that the program termi-
nates normally, in the first place.

e For every program that terminates with an error, all
models lead to a violation constraint. This is due to
the soundness of the analysis. Unfortunately, an un-
successful model attempt generally does not bring any
information as to whether the program must necessar-
ily terminate with an error.

¢ Among the programs that loop, some have a model
proving they are type-safe, some do not. Note that
they are type-safe. We believe that an important limi-
tation to the power of the framework concerns program
constructs where the safety depends on some mathe-
matical invariant. Generally, this cannot be described
by our kind of models.

The liberty in the choice of the framework parameters
allows this one to simulate many traditional analyses. For
example, call-string contours as in [15] can be easily imitated
by a proper definition of call. Basic set-based analysis [9],
being equivalent to the 0-cfa can be imitated, too.

The contours presented in [13] are based on polymorphic
splitting. Values created in let-bindings can be specialized
according to which variable reference accesses the values.
Simply stated, an abstract value bound to a variable in a
let-binding mutates differently depending on where the ref-
erence to the variable is located. Our framework does not
allow such a thing. However, a trivial source-to-source trans-
formation of the program and appropriate model selection
make it possible to obtain a similar analysis.

3 Demand-driven analysis

Here is an informal introduction to demand-driven analysis.
First, we illustrate the approach with an example. Then,
an overview of what a complete demand-driven approach
should include is presented. Next, the difficulty of dealing
with the call and conditional expressions is exposed. Finally,
many challenges to make a demand-driven approach work
are mentioned.

3.1 An example

To illustrate what demands might be, where they come from,
and how they can be processed, we use a small example.
Suppose that this A-expression appears somewhere in a pro-
gram:

(Aix. (if2 x3 (cars (pair?s x6)) #£f7))

Suppose also that a preliminary analysis has been done and
that, according to its results, the A-expression eventually
gets evaluated, resulting in a closure, and that the closure
is called many times with different pairs and with #f.

Note that a naive compilation of A-expression e; would
immediately produce good code except for the (only) dy-
namic test coming from the car expression. It would be
better if we could remove that test. Let us see how this
can be done. We need to prove that es returns nothing else
than pairs. Now, as far as the preliminary analysis of the
program can tell, es can evaluate to pairs and #f (remember
that, when e evaluates to a pair or to a non-pair, (pair?

e) evaluates to that pair or to #f, respectively). So, for the
moment, the dynamic test must stay there. In order to try
to change this, we will emit and process demands. These,
in turn, may lead to an update of the model such that it
will create an instance of an analysis that can provide the
desired proof.

Obviously, we need a first demand. Why not go for
the simplest solution? That is, make the following request:
“show that e5 always evaluates to pairs”. Or more precisely:
“show that es cannot evaluate to anything else than pairs”.
To show that it does not get evaluated at all would not be
bad, too. Let us call this demand D;.

Now, we have to process D; in some way. Note that D;
concerns es, which is a not a simple expression. The value
of es strongly depends on the value of its sub-expression
es. If we could rewrite D; into another demand related to
the simpler es, we would have made some progress. This
new demand D> could be: “show that es cannot evaluate
to anything else than pairs”. Clearly, Ds, if it is positively
answered, would have the same desirable consequences as
D;.

What can we do to respond to D2? Note that the prelim-
inary analysis says that x may be bound to #f (and suppose
that it is truly the case). A reasonable approach is to process
D> in two steps: first, we should separate the case where x
is bound to a pair from the case where it is not; then, if x
still evaluates to #f in the second case, we should request a
demonstration that that evaluation cannot happen. What
it means is that we emit a new demand D3 and then, if
necessary, another new demand Djy.

Let us first take care of D3. In more precise terms, D3
is: “split the current contour in order to separate the cases
where x is bound to a pair from the cases where x is bound to
#17. That is perfectly possible, as we explain shortly. So let
us consider that the previous contour k£ has been effectively
split into k' (pair case) and k" (#f case). There is certainly
no more problems with the evaluation in contour k' since x
must be bound to a pair, so es must return a pair, and so eq4
cannot go wrong. But what about evaluation in contour &?
Since x must be bound to #f in k', the test in es is always
false, the then-branch is never executed and, consequently
the CAR access is never made. Conclusion: in every case,
there is no need to perform a dynamic type test in e4. The
initial demand has been positively answered. That is, we
have emitted demands, processed them, and they have lead
to an update of the model that was sufficient to demonstrate
that the dynamic test is unnecessary.

Before we conclude this example, we need to explain why
we said that it was easy to separate the cases where x is
bound to a pair from the cases where x is bound to some-
thing else. This is because of our abstract model. The call
parameter selects the contour in which the body of a clo-
sure evaluates. Let us refer to the closure generated by e;
as ¢ and to the contour in which the body evaluates as k
in the old model. To keep things simple, we suppose that
they are unique. That means that call(l,c,v,k*) = k for
any label [, argument v, and contour k*. In other words,
when c is called, its body is always evaluated in the contour
k. Changing the model to make the required split simply
means defining a new modeling function call’ such that:

Vi € Lab,v € Val, k™ € Cont,

k', ifveValP
i * —)
call'(l, ¢, v, k%) = { k", otherwise

3.2 Overview

As we mention in the introduction, our demand-driven anal-
ysis should be able to produce some results in a short time, if
necessary, and be able to improve them continuously if it is
allowed to continue longer. In order to behave this way, the
demand-driven analyzer proceeds in two phases: the prelim-
inary analysis, the demand-driven phase; as sketched in the
introduction. The preliminary analysis is similar to a tra-
ditional analysis; its purpose is to collect initial information
using a static model. Typically, this information is good
enough to allow the removal of many dynamic type test but
not all of them. During the demand-driven phase, demands
are generated and processed in order to perform the model-
update/re-analysis phase. This phase continues until all the
demands have been positively answered or, usually, until the
bound on the analysis time is reached.

The choice of the model in the preliminary analysis is
what we discuss first. Next, we present a list of demands
that seem vital to guide the demand-driven analysis. Fi-
nally, we present typical processing of many kinds of de-
mands.

Initial model and initial demands

The choice of the initial model must be the result of a com-
promise between the time spent during the preliminary anal-
ysis and the quality of the preliminary analysis results. A
model that is too complex will make the preliminary analysis
costly, making even the fastest compilation with analysis too
long. A model that is too coarse may render the preliminary
analysis “blind”, its results sometimes being overestimated
to the point of being useless, thus leaving the whole task of
real analysis to the demand-driven part, which is necessarily
less efficient.

We believe that having an initial model with one ab-
stract pair, one abstract closure per A-expression, and one
contour (or one contour per closure body) would be of a
reasonable cost and provide preliminary analysis results of
relatively good quality. Such a model instantiates a mono-
variant analysis that is comparable to the 0-cfa. Since, in
the typical case, analyses like 0-cfa perform relatively well,
much fewer demands are generated in the demand-driven
part.

Choosing a coarser model having only a single abstract
closure to represent all concrete closures would lead to ex-
cessively poor results. Except in the most trivial of cases,
the abstract closure would be found to return everything,
leaving all the analysis work to the demand-driven part.
The only advantage of this choice would be a preliminary
analysis with linear complexity.

Choosing a finer model would increase significantly the
preliminary analysis time without any guarantee as to whe-
ther the a prior: refinements would bring any help for the
dynamic tests that would still remain after a 0-cfa-style anal-
ysis.

Once the preliminary analysis is done, formulating the
initial demands is trivial. Expressed in terms of analysis
variables, it takes the form of a list of “show «; C ValC”
and “show a; p» C ValP” demands.

Typical demands

The most natural demand type is like the initial demands.
We shall call these bound-demands. Since they can so easily
be reformulated in terms of other, more fundamental de-

mands, bound-demands only involve an o matrix entry and
a simple bound set.

One of these fundamental demand types is the split-
demand. We mentioned that kind of demand in the example
in Section 3.1. It says: “split something according to some-
thing”. The thing to split may be an abstraction in the
model or an analysis variable. As an example of the first
case, the demand could be “split P according to the label
where it is created”, where P is the unique abstract pair.
That would trigger a straightforward update of the function
pc. As an example for the second case, the demand could be
“split 7., according to the membership to the set of pairs”.
That means that the return values of closure ¢ when its body
is evaluated in contour £ have to be split into pairs and non-
pairs. The consequences in case of a successful response are
that the abstract closure ¢, the contour k, and anything else
if necessary will have to be split in such a way that for all ¢’
specializing ¢ and for all k' specializing k, v./ » will contain
either only pairs or no pair at all.

Split-demands directly on the model or on «, 83, or ~
entries are reasonable demands. However, we believe that
split-demands on § entries should not exist since they make
no sense. The only interesting concern with § entries is
whether they are empty or not. As for the “log” variables, it
may make sense to want to split them, but maybe not to try.
This is because they plainly describe how the abstraction
functions have been used during the analysis. They have a
very indirect (and passive) effect on the abstract evaluation
of the program. In order to have an effect on these entries,
a demand would certainly have to be reformulated in terms
of demands concerning entities on which it is clear that we
can have an effect.

A third type of demand consists in requesting a demon-
stration that some expression cannot get evaluated in some
contour. We shall call these never-demands and obviously
they can be formulated formally by “show &;, = (”. Such
demands typically arise when a certain evaluation necessar-
ily leads to an error. To make a variation on the example of
Section 3.1, if the sub-expression es of the expression (cars
es) in the non-pair contour k” would have still returned
some values, it would have been necessary to emit a never-
demand on J5 . Obviously, a split is not necessary since
there are no good cases (pairs) to separate from the bad
cases (non-pairs).

We touch a crucial issue, here: good cases and bad cases.
When there are only good cases, everything is fine, nothing
has to be done. When there are only bad cases, we have
to emit a never-demand but at least everything is clear.
When there are good and bad cases together, normally split-
demands have to emitted before emitting never-demands.
Otherwise, if we are asking a demonstration that such an
evaluation cannot occur, we may ask the impossible since
the good cases may reflect actual concrete evaluations in
the program. This principle must be kept in mind when we
propose processing techniques for the demands.

A fourth type of demand that seems vital is the no-call-
demand. A no-call-demand basically means: “show that
closure ¢ cannot be called on argument v in call site [when
the contour is k”. It typically may be emitted due to the
processing of a never-demand. To continue with our varia-
tion on the example, a never-demand on 5, may eventu-
ally require that we show that the closure c is never called
with a non-pair argument. This translates into one or more
no-call-demands.

Although an implementation of demand-driven analysis
may formulate other types of demands, the ones that we just

presented here form a core that must be present in one way
or another in order to be able to perform demand-driven
type analysis on a language such as ours.

Processing the demands

Demands originally express the need to demonstrate a “de-
sirable” property. A demonstration takes the form of a
model instantiating a particular analysis that brings the
proof that the property is indeed true. If we want to go
from the original demands to the appropriate model, these
demands have to be processed in some way. Note that we
have already implicitly described many cases of demand pro-
cessing.

In general, processing a demand leads to immediate suc-
cess, to immediate failure, or to emission of new, modified
demands. Immediate success occurs when, for example, the
demand is “split au, according to its type” and the expres-
sion e; is #f;. In this case, the model trivially conforms to
the demand: k itself is the only contour that is necessary
in order to have that no two objects of different type result
from the evaluation of e; in the same contour k', for any &’
specializing k.

Immediate failure, in our particular case, is most uncom-
mon. One specific demand, however, can lead to immediate
failure: “show &;,,k, = 0”. That is, trying to show that the
whole program does not get evaluated.

Most of the time, as was illustrated in the example of
Section 3.1, processing a demand leads to the creation of
new demands.

Even though particular demand-driven analyses may dif-
fer in the way their set of demands are processed, here we
present processing schemas that, almost certainly, have to
be similar in all cases.

e Original bound-demands, “show a;,, C (set)”, express
properties that, if they are not trivially satisfied nor
trivially contradicted, may first be re-expressed as a
split-demand and, upon success of this first sub-de-
mand, a never-demand ought to be emitted for each
ki specializing k such that oy r; (set). Note that the
split is intended to “separate the good cases from the
bad ones”. If the bound-demand property is trivially
respected, immediate success occurs. If it is trivially
contradicted, a single new demand is emitted: “show
S =0,

e Split-demands on 3 entries result in an update of the
model and in immediate success. Since only the cc
and call functions determine which contour is selected
depending, in particular, on the arguments to the clo-
sures, a model update is the only way to respond to
such demands. Of course, any split-demand directly
concerning the model causes an update of the model
and an immediate success.

o A split-demand on a 7., analysis variable can trivially
be reformulated in terms of a new split-demand on the
au,k, variable corresponding the result of the body e; of
the closure c.

e A split-demand on an «; j variable where ¢; is #£;, x;,
(cons; e e;), (car; ep), (cdr; ey), or (pair?; e;)
can normally be processed in a straightforward fash-
ion. It becomes, in the first case, an immediate success,
since it is clear that the sole #f value always falls into a
single “split category” according to the split criterion.
In the second case, it can trivially be reformulated as a

split-demand on S k. In the third case, depending on
the split criterion, the split may already be done (with
a split-on-type criterion, for example) or it may eas-
ily be reformulated in terms of split-demands on the
sub-expressions. The remaining cases are similar plus,
maybe, a direct split-demand on the model to special-
ize abstract pairs. To make a simplistic observation,
we would say that split-demands on « entries have a
tendency to propagate from an expression towards its
sub-expressions.

e A never-demand on a §; variable is processed ac-
counting for the parent expression e;; of e;. Most of the
time, the demand is reformulated into a never-demand
on J; . However, if e; is the consequent branch or
the alternate branch of an if expression, the demand
must be reformulated into a bound-demand onto the
test sub-expression. The bound is the set of true val-
ues (ValC U ValP) or false values (ValB), respectively.
Finally, if e; is a A-expression, the evaluation is the
result of a call, and it is generally not a simple matter
to process such a demand. Once again, to be simplis-
tic, we could say that never-demands have a tendency
to propagate from an expression towards its parent ex-
pression.

3.3 Difficult cases

In the preceding paragraphs, we presented some more or
less precise descriptions of what the processing of various
demands should be. However, we avoided certain demands
deliberately because they are clearly difficult to process. The
existence of difficult cases has to be expected since statically
proving interesting properties about a program is uncom-
putable in general, and this uncomputability is not going to
disappear simply because we are trying to make the analyzer
smarter by using a demand-driven approach. The difficul-
ties come mainly from the conditional expression and, to a
greater extent, from the call expression. We illustrate the
potential problems with two examples.

Let us suppose that we have the following expression:
(if; e, e, e;3). We must process a split-demand on oy
according to the type of the result. Let us suppose, also,
that the analysis results under the current model indicate
that e;, may evaluate to objects of all types, that e;; may
evaluate only to pairs, and that e;; may evaluate to both
true and false values. How can we process this demand?

Note that e; evaluates to a set of values that is the union
of the results of both its branches. Since e;, already has
a pair-only result, we could emit a bound-demand on e,
to request a demonstration that in fact it evaluates only
to pairs. Alternatively, we could emit a bound-demand on
er, to request a demonstration that it evaluates only to #f.
Which strategy is the best?

Obviously, the example shows that the difficulty comes
from the fact that there are more than one possible direc-
tion to continue processing. Moreover, note that neither of
the two proposed demands is adequate because they may
involve properties that flatly contradict what the concrete
computations are. In such cases, there would be no hope of
ever responding successfully to the demands.

The processing of demands concerning calls is even more
difficult. Let us consider the following expression: (ie;, ez,).
Suppose that the demand is the same as in the if example.
Also, suppose that the current analysis results tell us that:
e;, evaluates to two closures c; and c2, e;, evaluates to ob-
jects of more than one type, the closure c¢i returns objects

of only one type, and ¢z returns objects of different types.
How should we proceed?

The “poly-type” results of e; may be explained by the
fact that: co returns objects of the same type as those that
it receives, so we should split the value of e;,; the concrete
closure corresponding to c2 returns “mono-type” results, but
its poor modeling suggests the contrary, so we should split
its return value; or no concrete closure corresponding to c»
is ever present at e;; during the concrete evaluation, so we
should split the value of e, , and demand that the case where
e, evaluates to cz2 be proved impossible.

Clearly, processing in such a case is far from obvious since
the appropriate demands may concern e;, e;,, the closures
that are invoked, or a combination of the three.

3.4 Challenges

On top of the natural difficulty that comes with the pro-
cessing of the demands, there are several others that make
things more complex.

As we mentioned above, the processing of a demand and
its sub-demands may last forever. This may happen in par-
ticular because the property that must be demonstrated
is not based on legitimate reasons (such as in the condi-
tional expression example) or simply because it is beyond
the power of the framework to support the necessary proof.
Clearly, there must be a mechanism that ensures that the
analyzer does not get stuck in such processing.

Since the attempt to prove a property may last forever
and there are generally more than one property to prove, the
original demands cannot be processed one after the other.
The amount of time available to the analysis may be ex-
hausted by one of the first demands, possibly leaving unan-
swered many “easy” demands that would have been suc-
cessfully processed in little time. So the processing of the
demands must be made using some kind of concurrency.

Note that using a bound on the time available to the an-
alyzer is clearly a necessity but it is also one of its feature.
Although unusual in the field of program analysis, this con-
cept is fairly natural when we think about it. In a way, it
corresponds more to the human notion of work than to the
algorithmic complexity notion of work. While the ideal pa-
rameter to an analyzer would be the quality of the results, a
bound on the available time is probably the closest realistic
equivalent.

The processing of an original demand naturally leads to a
tree of sub-demands. Of course, these sub-demands cannot
all be processed at the same time. Some have to be put into
a waiting queue until it is their turn. However, during the
time that a demand is in the queue, the model may have
been refined due to the processing of other demands. In
such a case, an “old” demand may refer to abstractions that
have been broken down into more specialized abstractions.
Consequently, there must be a mechanism to keep demands
up to date.

Finally, an important question relates to the concur-
rent demand processing: should the various processing trees
share the abstract model? Remark that they do not have
to. Each original demand can be responded independently.
This is because that what matters is which of the original
demands are successfully answered. Two distinct dynamic
tests may both be omitted from a program, even if each has
been showed redundant using a distinct model.

The advantage of sharing the model is that a successful
demonstration of property A may have uncovered many in-
variants of the program that would make the demonstration

of property B easier. The inconvenience is that if all up-
dates occur in the same model then almost every demand
that goes in the waiting list has to be specialized to follow
the numerous finer abstractions introduced by the updates,
resulting in a proliferation of demands.

A compromise that may be interesting consists in shar-
ing each model with the one used to successfully answer a
demand. What is interesting with such a model is that it
can be reduced prior to the sharing with the other mod-
els. The idea is the following: during the processing of a
tree of demands, all kinds of updates are performed on the
model; eventually, one last update causes the model to pro-
vide a proof for the original demand; however, only some of
the refinements to the model are really necessary to provide
the proof; undoing the unnecessary refinements produces a
model that is as small as possible.

4 A basic analysis

We present a prototype of a demand-driven analysis that is
based on patterns. We briefly describe this pattern-based
modeling and some of the choices that we have made con-
cerning the various problems that must be addressed.

4.1 Abstract model

The modeling of the abstractions is made using pattern
matching. A pattern list must be exhaustive and, associ-
ated with each pattern, there is a particular abstraction in-
stead of code to execute. For example, a very simple pattern
matcher describing the abstract pairs might look like:

(#f, Val) = P
A, Val) = P
((val,val), Val) = P

Obviously, it represents three abstract pairs, each being spe-
cialized with the type of the object that it contains in the
CAR field.

One important characteristic of our pattern matching is
that it does not require that a modeling of pairs, for example,
has to be the Cartesian product of all the specializations
found in the CAR with those found in the ¢DR. This is crucial
for the patterns representing contours since these are kinds
of “lists” that can be as long as the lexical environment in
the program.

4.2 Demands

Figure 8 presents the syntax of the demands and that of the
patterns they include. The set of demands corresponds ba-
sically to what we describe in Section 3 except for split-call,
which is an auxiliary demand used in the processing of split-
demands on call expressions, and monitor-call, which is an-
other auxiliary demand that tries to prove that calls of cer-
tain closures on certain arguments cannot occur in certain
contours.

The syntax of the patterns is described by (pat), which
represents the splitting patterns, by (sPat), which are the
static patterns, by (ctPat), which are splitting contour pat-
terns, and by (sCtPat), which are static contour patterns. A
splitting pattern contains one and only one splitting point,
indicated by *. When abstractions are split according to
a pattern, only those that match the pattern are modified,
and the modification consists in adding an “extra-level” of
inspection at the splitting point. Static patterns are used
to help describing the abstractions that are to be modified.

(demand) show g1, C (bound)

split aq . (pat)

split Bek | (pat)

split e 1 (pat)

split ValP (pat)

show 01 = 0

split-call | (sCtPat) (pat)
monitor-call I (sCtPat)

ValB | ValC | ValP | ValTrues
* | A | A (ctPat)

(pat), (sPat)) | ((sPat), (pat))
Val | #f | Av | At (sCtPat)
((sPat), (sPat))

(ctPat) ;= ((sPat)” (pat) (sPat)")
(sCtPat) := ((sPat)")

(bound)
(pat)

(sPat)

Figure 8: Demand syntax

The contours used at an expression ¢; are an abstract model
of the lexical environment. So contour patterns are lists of
patterns that are as long as the lexical environment is at the
points of the program where they are used.

4.3 Back to the example

If we return to the example of Section 3.1, a pattern-based
demand-driven analysis proceeds like this. The original de-
mand is:

show asr C ValP

where k represents (Val ... Val). That demand is first
reformulated into a split-demand according to the type:

split asp *

Processing this demand is trivial and it produces another
split-demand. It concerns the sub-expression:

split a1 *
This one becomes a split-demand on the variable:
split Bk 6 %

The label 6 is present in order to unambiguously indicate
which program point requires an update. This is because k
may be used in more than one function body. This demand
finally causes an update in the model of the call function
in such a way that a call to the closure can result in the
contour

(#f Val ... Val),
(Val ... Val), or
((val,val) Val ... Val).

The rest of the explanations are similar.

4.4 The difficult cases

In Section 3, we showed that the difficult cases are the con-
ditional expressions and the call expressions. Also, we list
many other difficulties. We present some choices that we
made in our pattern-based analysis.

A split-demand on the evaluation results of a conditional
expression are dealt with in this way: split-demands with the

10

same pattern are sent to both branches and another split-
demand with the % pattern is sent to the test. With luck,
all three sub-demands succeed, and the split-demand on the
conditional is a success since each new contour necessarily
leads to mono-type evaluation results of the conditional.

A split-demand on a call expression proceeds by: split-
ting the return value of each closure (that may be involved
there) according to the same pattern; this processing in-
directly creates an “association” between the output and
the input of the closures; a split-call auxiliary demand then
computes an “easiest” way to distinguish call situations that
lead to different split categories; it finally emits a sequence
of demands on the sub-expressions of the call expressions
that, if successfully answered, would complete the split of
the call expression.

These processing strategies are generally too aggressive
in their generated sub-demands and a major difficulty is
to deal with those that do not succeed. We have included
a time-out feature to the processing of sub-demands that
allows their parent to turn to a “backup plan” when the
time-out is reached. The backup plans often resort to sub-
demands that are often less legitimate than the ones that
have expired and, so, maybe even more susceptible to be
impossible to acknowledge or at least more difficult. But, as
the name of these plans says, this is the last recourse.

4.5 Pros and cons

The pattern-based demand-driven analysis has the advan-
tage of being of manageable complexity. That is why we
have chosen it as a first attempt of demand-driven analysis.
However, it has some weaknesses that may considerably re-
duce the power of the whole analysis. Its weaknesses come
directly from its concept: patterns. Patterns can only dis-
tinguish object structures on the surface or not very deep.
They are fundamentally incapable of distinguishing struc-
tures that start to differ at deep levels, such as, for example,
lists of booleans ending with a boolean and lists of booleans
ending with a function:

(FE, (1, (3, #1) ..))
(L, (£, ... (#£Av) ..))

However, we cannot say that the pattern-based is just
good enough to “show in greater detail that we still know
nothing”. If the program manipulates data structures that
can be distinguished by looking only a few levels deep, then
our analysis has the capability to find the characteristics
of these data structures. Figure 9 shows such an example.
Suppose that the program manipulates only lists of booleans
and lists of functions. Then a simple split of the abstract
pairs may lead to a perfect description of the lists. This is
due to the log analysis variables, which record the circum-
stances that prevail when abstract objects are created. The
figure shows two models, the coarse and the finer, and the
information that is consigned in the logs.

5 Conclusion

5.1 Related work

As far as we know, there is no work with the same goal.
The most closely related research is the work of Duester-
wald et al. [7], Agrawal [1], and Heintze and Tardieu [10].
In [7], a framework to obtain a demand-driven analysis from
a certain class of inter-procedural data-flow problems is de-
scribed. However, as the authors of [10] mention, this class

MODEL OBSERVED RESULTS
analysis #f #f
(Val,val), = <f cvalc * P)P
U,.epm ValP (x, Val)
#f)
SR 7 B
* , Val)p, = ()
€ ValC,
((Val,Val), Val)p, fevalt, p,),
(0) 0)P3

Figure 9: A simple split may uncover more complex struc-
tures

is restricted and does not even include the problem that
they address: a flow-insensitive, context-insensitive pointer
analysis; which is still elementary. In [1], a demand-driven
data-flow analysis that does not require prior call graph in-
formation to be present is described.

What these proposals have in common with ours is the
fact that demands are generated for some reasons and then
propagated. That is all. Their goal is simply to take a
well-known, traditional analysis and adapt it so that only a
subset of the computations need to be performed in order to
provide answers to certain requests. Only a few, when not
only one, very simple demand types exist.

5.2 Future work

Investigation in this research should consider alternatives to
patterns for abstract modeling and formulating demands.
First, we should consider distinguishing pairs by their cre-
ation expression and contour rather than by their direct con-
tents. We believe that this modeling may be more powerful
than the pattern-based modeling. However, it is not clear
how to express demands in this representation. Second, a
representation using regular trees (see [4, 3, 5, 6]) system-
atically may prove to be very powerful. This representation
could be used to express demands, too. It may be far from
efficient, though. Third, we should explore an approach to
systematically compute demands that is reminiscent of logic
programming. The idea is to give a demand-driven analy-
sis interpretation to the expressions. This interpretation is
a function transforming demands (in the sense of bound-
demands) to environment demands. The advantage of this
approach seems to be the fact that it is systematic but it
is not clear if it can be more powerful than pattern-based
analysis.

The biggest problem with our approach is the process-
ing of demands related to conditional and call expressions.
Additional informations about facts that are known with
certainty, might help to better decide what sub-demands to
emit. For example, it could indicate that certain demands
have to fail because a counter-example has been found. The
certain facts would have to be discovered by an auxiliary
analysis. The latter would concentrate on trying to prove
facts that would help the most the demand-driven analyzer.

In a more complex application than our type analysis for
a mini-language, original demands could come from a wider
variety of hints. In consequence, it may be necessary to as-
sign a reliability degree to the demands. For example, if we
extend our problem to include detection of inlining oppor-
tunities, then it would be “desirable” to prove that a certain
call expression can only invoke one particular closure. Since

11

such a demand originates from a desire on our part and is
not backed by any more solid evidence, then it should receive
a lower reliability degree.

Another direction consists in extending the scope of the
analysis to be able to deal with a language closer to Scheme,
that is, including more algebraic types, higher- and variable-
arity functions, continuations, I/O, and side-effects. Except
for continuations, we do not expect any serious problems.
Dealing with continuations probably requires that we intro-
duce a new type of abstract objects since ordinary functions
cannot mimic their behavior. Otherwise, a conversion to
CPS may be required. Separate compilation of programs
is not a standard part of Scheme, but it is common prac-
tice. Unfortunately, we do not see how our demand-driven
approach could be adapted to deal with it. Not only does
our analysis has to propagate abstract objects everywhere in
the program, it also has to propagate demands everywhere
(from callee to caller, for example, which may come from
different modules).

Finally, other analyses than type analysis should be con-
sidered in order to verify how well our demand-driven ap-
proach applies outside of type analysis. One such analysis
is range analysis for numerical values. A part of the goal of
this analysis consists in removing bound checks in indexable
data structure accesses and removing verifications before di-
visions and other unsafe numerical operations. Since these
operations relate to safety issues, they can be seen as good
hints from which we can generate initial demands.

5.3 Contributions

In this paper, we presented a proposal of how to perform a
high-quality type analysis while trying to have a moderate
time and space complexity. It is based on a demand-driven
analysis that uses a very powerful analysis framework. The
flexibility of the framework comes from the fact that the
abstract model of the objects can be changed dynamically.
With appropriate models, the framework can emulate the
behavior of many traditional type analyses. Although the
way to generate initial demands from hints present in the
program is similar to what is done in other research, the
purpose of the demands is radically different. Their gen-
eration and processing guides the successive updates of the
analysis model that is used in the flexible framework, mak-
ing successive analysis instances that are better equipped
to analyze the program at hand. We also give a sketch of
our implementation of a pattern-matching demand-driven
analysis.

References

[1] G. Agrawal. Simultaneous demand-driven data-flow
and call graph analysis. In Proceedings of International
Conference on Software Maintainance, pages 453-462,
sep 1999.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compil-
ers: Principles, Techniques and Tools. Addison-Wesley,
1986.

[3] A. Aiken and B. Murphy. Implementing regular tree
expressions. In Functional Programming and Computer
Architecture, pages 427-447, aug 1991.

[4] A. Aiken and B. Murphy. Static type inference in a
dynamically typed language. In ACM, editor, POPL

[10]

[11]

[12]

’91. Proceedings of the eighteenth annual ACM sympo-
stum on Principles of programming languages, January
21-23, 1991, Orlando, FL, pages 279-290, 1991.

A. Aiken and E. L. Wimmers. Type inclusion con-
straints and type inference. In Proceedings of the
Conference on Functional Programming Languages and
Computer Architecture, pages 31-41, jun 1993.

B. Courcelle. Fundamental properties of infinite trees.
Theoretical Computer Science, 25(2):95-169, mar 1983.

E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-
driven computation of interprocedural data flow. In
Symposium of Principles of Programming Languages,
pages 37-48, jan 1995.

R. Gupta. Optimizing array bound checks using flow
analysis. ACM Letters on Programming Languages and
Systems, 2:135-150, 1993.

N. Heintze. Set based analysis of ML programs
(extended abstract). Technical Report CS-93-193,
Carnegie Mellon University, School of Computer Sci-
ence, jul 1993.

N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In Proceedings of SIGPLAN 2001 Conference
on Programming Languages Design and Implementa-
tion, ACM SIGPLAN Notices. ACM Press, jun 2001.

P. Hudak. A semantic model of reference counting and
its abstraction (detailed summary). In Proceedings of
the 1986 ACM Conference on Lisp and Functional Pro-
gramming, pages 351-363, 1986.

S. Jagannathan and S. Weeks. A unified treatment of
flow analysis in higher-order languages. In 22nd ACM
Symposium on Principles of Programming Languages,
pages 392401, jan 1995.

S. Jagannathan and A. Wright. Effective flow analysis
for avoiding run-time checks. Lecture Notes in Com-
puter Science, 854:207-224, 1995.

O. Shivers. Control flow analysis in Scheme. In Proceed-
ings of the SIGPLAN ’88 Conference on Programming
Language Design and Implementation, pages 164-174,
jun 1988.

O. Shivers. The semantics of Scheme control-flow analy-
sis. In Proceedings of the Symposium on Partial Evalua-
tion and Semantics-based Program Manipulation, pages
190-198, jun 1991.

12

